跳到主要內容

簡易檢索 / 詳目顯示

研究生: 何振文
Chen-Wen Ho
論文名稱: 蒙地卡羅模擬在選擇權評價上之運用
指導教授: 張森林
San-Lin Chung
口試委員:
學位類別: 碩士
Master
系所名稱: 管理學院 - 財務金融學系
Department of Finance
畢業學年度: 88
語文別: 中文
論文頁數: 46
中文關鍵詞: 蒙地卡羅模擬美式選擇權
外文關鍵詞: Monte Carlo Simulation, American Options, Variance Ruduction
相關次數: 點閱:4下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 文獻上有學者提出數種利用蒙地卡羅模擬來評價美式選擇權的方法,其中
    Barraquand-Martineau(BM,1995)將資產價格之空間予以分隔,並觀察每
    條路徑在不同區域間移動的機率,再以類似二項式的方式回推加以求解。
    Raymar-Zwecher(RZ,1997)則是修正BM的模型,將資產價格之空間分隔
    成兩個維度,然後同樣觀察每條路徑在不同區域間移動的機率,再以類似
    二項式的方式回推來加以求解。在本文中,我們主要是發現BM及RZ兩美
    式選擇權定價模型對於持有價值的估計有所偏誤,並進一步提出改進之道
    ,建構修正模型,並將修正模型應用於美式標準買權、美式下終賣權、美
    式回顧賣權、美式幾何平均價格買權、美式算術平均價格買權以及美式最
    大值買權共六種美式選擇權評價之上,針對不同的區塊分隔方式以及不同
    的區塊分隔因子加以探討,並以最近文獻上的估計值作為比較基準,檢視
    修正模型是否適用於這六種美式選擇權的評價。最後,我們亦利用相反變
    異法(Antithetic Variate Approach)、動差配適模擬法(Moment Matching
    Simulation)以及平賭過程配適模擬法(Empirical Martingale Simulation)三
    種降低變異方法,檢驗其對於上述六種歐式以及美式選擇權的適用性。
    由本文之研究分析我們得到下列幾點結論:(1)、修正模型相較於BM模
    型或RZ模型而言,的確可以改善對於持有價值估計的準確性,進而增加對
    於美式選擇權價值估計的準確程度;(2)、根據選擇權的特性選擇不同
    的區塊分隔方式以及不同的區塊分隔因子是相當重要的,因為這會影響到
    估計值的準確程度和收斂速度;(3)、修正模型對於六種美式選擇權評
    價均有不錯的效果,且對於價外或價內的選擇權,準確度較價平選擇權來
    得高;(4)三種降低變異方法中,大致上以平賭過程配適模擬法的效果最
    好,動差配適模擬法次之,相反變異法較差,不過均較原始蒙地卡羅模擬
    的標準差有顯著改善,且對於越是價內的選擇權,改善的程度越顯著。


    目 錄 頁次 圖目錄............................................................................................................Ⅰ 表目錄............................................................................................................Ⅱ 第一章前言.............................................................................................1 第二章蒙地卡羅模擬概述.....................................................................3 第一節 蒙地卡羅模擬之簡介......................................................3 第二節 蒙地卡羅模擬用於選擇權之評價..................................5 第三節 降低變異方法之簡介......................................................10 第三章BM模型與RZ模型之修正...........................................................13 第四章蒙地卡羅模擬結果與分析..........................................................22 第一節 不同區塊分隔方式及不同區塊分隔因子下 ,蒙地卡羅模擬評價美式選擇權之結果........................23 第二節 降低變異方法運用於蒙地卡羅模擬評價 選擇權之結果..................................................................33 第五章結論與建議.................................................................................41 參考文獻........................................................................................................43 附錄A. 變數轉換方法之介紹.......................................................................45

    參考文獻
    一、中文部分
    1.廖志峰,保本基金之設計與評價,中央大學財務管理研究所碩士論文,
    民國88年6月。
    二、英文部分
    1.Barraquand, J., 1995, "Numerical Valuation of High Dimensional Multivariate
    European Securities," Management Science, 41, 1882-1891.
    2.Barraquand, J., and D. Martineau, 1995, "Numerical Valuation of High
    Dimensional Multivariate American Securities,"Journal of Financial and
    Quantitative Analysis, 30, 3, 383-405.
    3.Barraquand, J., and T. Pudet, 1996, "Pricing of American Path-Dependent
    Contingent Claims," Mathematical Finance,6,17-51.
    4.Black, F. and M. Scholes, 1973, "The Pricing of Options and Corporate
    Liabilities," Journal of Political Economics, 81,637-659.
    5.Boyle, P., 1977, "Options: A Monte Carlo Approach," Journal of Financial
    Economics, 4, 323-338.
    6.Boyle, P., M. Broadie, and P. Glasserman, 1997, "Monte Carlo Methods for
    Security Pricing," Journal of Economic Dynamics and Control, 21, 8-9,
    1263-1321.
    7.Broadie, M., and P. Glasserman, 1997, "Pricing American-Style Securities
    Using Simulation," Journal of Economic Dynamics and Control, 21, 8-9,
    1323-1352.
    8.Cox, J., S. Ross and M. Rubinstein, 1979, "Option Pricing: A Simplified
    Approach," Journal of Financial Economics, 7, 229-264.
    9.Duan, J.C., and J.G. Simonato, 1998, "Empirical Martingale Simulation
    for Asset Prices," Management Science, 44, 9, 1218-1233.
    10.Duan, J.C., E. Dudley, G. Gauthier, and J.G. Simonato, 1999, "Pricing
    Discretely Monitored Barrier Options by a Markov Chain," Working Paper.
    11.Grant, D., G. Vora, and D. Weeks, 1996, "Simulation and the Early-Exercise
    Option Problem," Journal of Financial Engineering, 5, 3, 211-227.
    12.Hull, J. C., 1993, "Options, Futures, and Other Derivative Securities," 3th
    edition, Prentice Hall.
    13.Hull, J., and A. White, 1993, "Efficient Procedure for Valuation European
    and American Path-Dependent Options," Journal of Derivatives, 1, 21-31.
    14.Joy, C., P. Boyle, and K.S. Tan, 1996, "Quasi Monte Carlo Methods in
    Numerical Finance," Management Science, 42, 6, 926-936.
    15.Moro, B., 1995, "The Full Monte," Risk, 8, 2, 57-58.
    16.Press, W., S. Teukolsky, W. T. Vetterling, and B. P. Flannery, 1992,
    "Numerical Recipes in Fortran: The Art of Scientific Computing,"
    2nd edition, Cambridge University Press.
    17.Raymar, S., and M. Zwecher, 1996, "Monte Carlo Valuation of
    Multidimensional American Path-Depedent Options," Working paper,
    Fordham University, December.
    18.Raymar, S., and M. Zwecher, 1997, "Monte Carlo Estimation of
    American Call Options on the Maximum of Several Stocks," The Journal
    of Derivatives, 5, 1, 7-23.
    19.Rubinstein, M., 1985, "Nonparametric Tests of Alternative Pricing Models
    Using All Reported Trades and Quotes on the 30 Most Active CBOE
    Option Classes from August 23, 1976 Through 31, 1978," Journal of
    Finance, 40, 455-480.
    20.Tilley, J. A., 1993, "Valuing American Options in a Path Simulation
    Model," Transactions of the Society of Actuaries, 45, 83-104.
    21.Zhang, P. G., 1997, "Exotic Options," World Scientific Publish Company.

    QR CODE
    :::