| 研究生: |
張尚仁 Shang-jen Chang |
|---|---|
| 論文名稱: |
矽單晶奈米線氧化動力學及其氣體偵測性質研究 |
| 指導教授: |
鄭紹良
S. L. Cheng |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程與材料工程學系 Department of Chemical & Materials Engineering |
| 論文出版年: | 2013 |
| 畢業學年度: | 101 |
| 語文別: | 中文 |
| 論文頁數: | 106 |
| 中文關鍵詞: | 矽晶奈米線 、氧化 、動力學 、氣體偵測 |
| 外文關鍵詞: | silicon nanowire, oxidation, kinetic, sensor |
| 相關次數: | 點閱:11 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
摘要
本研究成功利用聚苯乙烯奈米球微影術(Polystyrene Nanosphere Lithography,PSNSL)結合金屬催化化學蝕刻法在(001)晶面之矽晶基材上,製備出垂直於矽晶基材且規則有序排列之矽晶奈米線陣列,其矽晶奈米線寬度約為120 nm。從TEM 影像及其相對應之電子繞射圖形鑑定分析可得知,矽晶奈米線陣列均為單晶結構,且軸向方向沿著[001]方向生成。
為了進一步研究矽晶奈米線氧化機制與動力學,我們將120 nm和60 nm之矽晶奈米線進行一系列不同溫度、時間之熱氧化。從TEM影像觀察矽晶奈米線氧化後之形貌即可發現,矽晶奈米線Core-Shell 結構中心半徑會隨著氧化時間及溫度增加而逐漸減少,氧化層厚度則逐漸增厚。由於矽晶奈米線之應力作用,在氧化初期,60 nm之矽晶奈米線的氧化速率會大於矽晶平板基材和120 nm之矽晶奈米線,而其所生成之氧化層厚度與氧化時間呈現一拋物線關係,證明氧化過程為一擴散控制的反應機制。接著利用不同時間對氧化層厚度於不同時間下之生成速率可以得到120 nm矽單晶奈米線和60 nm矽單晶奈米線氧化層之生成反應活化能分別約為65.4 (kJ/mol)、 62.7 (kJ/mol)。
在氣體性質量測實驗中,我們利用矽晶基材平板及規則有序排列之矽晶奈米線二種不同的試片做成感測器的偵測元件,並於室溫下通入丙酮、氨水兩種氣體進行偵測。不論通入丙酮或氨水,有結構之矽晶奈米線相對於矽晶平板試片,都具有較高的氣體偵測靈敏度。在660 ppm之丙酮氣體有14%的靈敏度,9 ppm之氨氣則有900%之靈敏度推測原因可能為奈米線結構增加了偵測反應的表面積,使其靈敏度提高。
Abstract
In the present study, we have demonstrated that arrays of vertically aligned Si nanowire were successfully produced on (001)Si substrates by using the PS nanosphere lithography combined with the Au-assisted selective chemical etching process. The diameter of the Si nanowire produced was very uniform and observed to be approximately 120 nm. Based on the analyses of the TEM image and the corresponding SAED patterns, it can be concluded that the Si nanowires produced have a single-crystalline nature and formed along the [001] direction.
In order to further study the oxidation mechanism of Si nanowires, Si nanowires with diameters of 120 nm and 60 nm of silicon were prepared for a series of different temperature and time on thermal oxidation. The oxidation kinetics of Si nanowires with different diameter were investigated by TEM. The radius core of Si and the thickness of oxide shell were found to decrease and increase with oxidation temperature and time. In addition, the oxidation rate of 60-nm-diameter Si nanowires is faster than that of blank Si and 120-nm-dianeter silicon nanowires due to the stress effects. The thickness of outer SiO2 shell was found to increase parabolically with oxidation time, indicating that the growth of SiO2 shell is diffusion-controlled. By measuring the growth rate of SiO2 shell at different temperatures, the activation energies for the growth of SiO2 shells on 120-nm-diameter and 60-nm-diameter Si nanowires were determined to be about 65.4 kJ/mol, and 62.7 kJ/mol, respectively.
For the gas sensing experiments, blank-Si wafer and periodic Si nanowire arrays, were used as the gas sensor in this study. Their gas sensing properties towards acetone and ammonia were investigated at room temperature. Whether exposed to acetone or ammonia the sensitivity of the Si nanowires sensor is much higher than that of the blank-Si sensor. In this study, the gas sensitivity of the Si nanowires sensor reaches as high as 14% for 660 ppm acetone and 900% for 9 ppm ammonia. The enhanced sensing performances of the Si nanowires sensor can be attributed to its high surface-to-volume ratio.
參考文獻
[1] G. E. Moore, “Cramming More Components onto Integrated Circuits,” Electronics. 38 (1965) 56-59.
[2] Ashish Sood, Gareth M. James, Gerard J. Tellis and Ji Zhu, “Predicting the Path of Technological Innovation: SAW vs. Moore, Bass, Gompertz, and Kryder,” Market. Sci. 31 (2012) 6964-6979.
[3] Z. Kang, C. H. A. Tsang, N. B. Wong, Z. Zhang, and S. T. Lee, “Silicon Quantum Dots: A General Photocatalyst for Reduction, Decomposition, and Selective Oxidation Reactions,” J. Am. Chem. Soc. 129 (2007) 12090-12091.
[4] K. Q. Peng, X. Wang, X. Wu, and S. T. Lee, “Fabrication and Photovoltaic Property of Ordered Macroporous Silicon,” Appl. Phys. Lett. 95 (2009) 143119.
[5] M. M. A. Hakim, M. Lombardini, K. Sun, F. Giustiniano, P. L. Roach, D. E. Davies, P. H. Howarth, M. R. R. de Planque, H. Morgan, Peter Ashburn, “Thin Film Polycrystalline Silicon Nanowire Biosensors, ” Nano. Lett. 12 (2012) 1868−1872.
[6] G. J. Zhang, M. J. Huang, J. J. Ang, E. T. Liu, K. V. Desai, “Self-Assembled Monolayer-Assisted Slicon Nanowire Biosensor for Detection of Protein–DNA Interactions in Nuclear Extracts from Breast Cancer Cell” Acs. Sym. Ser. 26 (2011) 3233–3239.
[7] N. N. Mishra, W. C. Maki, E. Cameron, R. Nelson, P. Winterrowd, S. K. Rastogi, B. Filanoski, and G. K. Maki, “Ultra-Sensitive Detection of Bacterial Toxin with Silicon Nanowire Transistor,” Lab. Chip. 8 (2008) 868-871.
[8] S. Su, Y. He, M. Zhang, K. Yang, S. Song, X. Zhang, C. Fan, and S. T. Lee, “High-Sensitivity Pesticide Detection via Silicon Nanowires-Supported Acetylcholinesterase-Based Electrochemical Sensors,” Appl. Phys. Lett. 93 (2008) 023113-1-023113-3.
[9] Z. Li, Y. Chen, X. Li, T. I. Kamins, K. Nauka, and R. S. Williams, “Sequence-Specific Label-Free DNA Sensors Based on Silicon Nanowires,” Nano. Lett. 4 (2004) 245-247.
[10] X. T. Zhou, J. Q. Hu, C. P. Li, D. D. D. Ma, C. S. Lee, and S. T. Lee, “Silicon Nanowires as Chemical Sensors,” Chem. Phys. Lett. 369 (2003) 220–224.
[11] J. F. Hsu, B. R. Huang, C. S. Huang, and H. L. Chen, “Silicon Nanowires as pH Sensor,” Jpn. J. Appl. Phys. 44 (2005) 2626–2629.
[12] I. Park, Z. Li, A. P. Pisano and R. S Williams, “Top-Down Fabricated Silicon Nanowire Sensors for Real-Time Chemical Detection,” Acs. Sym. Ser. 21 (2010) 015501.
[13] C. K. Chan, H. Peng, G. Liu, K. McIlwrath, X. F. Zhang, R. A. Huggins, and Y. Cui, “High-Performance Lithium Battery Anodes Using Silicon Nanowires,” Nat. Nanotechnology. 3 (2008) 31-35.
[14] K. Kang, H. S. Lee, D. W. Han, G. S. Kim, D. Lee, G. Lee, Y. M. Kang, and M. H. Jo, “Maximum Li Storage in Si Nanowires for the High Capacity Three-Dimensional Li-Ion Battery,” Appl. Phys. Lett. 96 (2010) 053110-1~053110-3.
[15] N. Liu, L. Hu, M. T. McDowell, A. Jackson, and Yi Cui, “Prelithiated Silicon Nanowires as an Anode for Lithium Ion Batteries,” ACS. Nano. (2011) No.8 6487–6493.
[16] M. T. Björk,J. Knoch, H. Schmid, H. Riel, and W. Riess, “Silicon Nanowire Tunneling Field-Effect Transistors,” Appl. Phys. Lett. 92 (2008) 193504.
[17] G Rosaz, B Salem, N Pauc, P Gentile, A Potie, A Solank, and T Baron “High-Performance Silicon Nanowire Field-Effect Transistor with Silicided Contacts,” Semicond. Sci. Technol. 26 (2011) 085020.
[18] B. Yang, K. D. Buddharaju, S. H. G. Teo, N. Singh, G. Q. Lo, and D. L. Kwong, “Vertical Silicon-Nanowire Formation and Gate-All-Around MOSFET,” IEEE. Electr. Device. Lett. 29 (2008) 791-794.
[19] H. C. Wu, H. Y. Tsai, H. T. Chiu, and C. Y. Lee, “Silicon Rice-Straw Array Emitters and Their Superior Electron Field Emission,” Appl. Mater. Inter. 2 (2010) 11 3285–3288.
[20] H. C. Wu, T. Y. Tsai, F. H. Chu, N. H. Tai, H. N. Lin, H. T. Chiu, and C. Y. Lee, “Electron Field Emission Properties of Nanomaterials on Rough Silicon Rods,” J. Phys. Chem. C 114 (2010) 130–133.
[21] Y. F. Tzeng, H. C. Wu, P. S. Sheng, N. H. Tai, H. T. Chiu, C. Y. Lee, and I. N. Lin, “Stacked Silicon Nanowires with Improved Field Enhancement Factor,” Appl. Mater. Inter. 2 (2010) No. 2 331–334.
[22] K. Peng, X. Wang, and S. T. Lee, “ Silicon Nanowire Array Photoelectrochemical Solar Cells,” Appl. Phys. Lett. 92 (2008) 163103.
[23] E. Garnett and P. Yang, “Light Trapping in Silicon Nanowire Solar Cells,” Nano. Lett. 10 (2010) 1082-1087.
[24] K. Peng, X. Wang, and S. T. Lee, “Silicon Nanowire Array Photoelectrochemical Solar Cells,” Appl. Phys. Lett. 92 (2008) 163103-1~163103-3.
[25] X. Wang, K. Q. Peng, X. J. Pan, X. Chen, Y. Yang, L. Li, X. M. Meng, W. J. Zhang, and S. T. Lee, “High-Performance Silicon Nanowire Array Photoelectrochemical Solar Cells through Surface Passivation and Modification,” Angew. Chem. Int. Ed. 50 (2011) 9861 –9865.
[26] L. Tsakalakos, J. Balch, J. Fronheiser, B. A. Korevaar, O. Sulima, “Silicon Nanowire Solar Cells,” Appl. Phys. Lett. 91 (2007) 233117.
[27] J. Niu, J. Sha, and D. Yang, “Silicon Nano-Wires Fabricated by a Novel Thermal Evaporation of Zinc Sulfide,” Physica E 24 (2004) 178-182.
[28] Z. Zhang, X. H. Fan, L. Xu, C. S. Lee, and S. T. Lee, “Morphology and Growth Mechanism Study of Self-Assembled Silicon Nanowires Synthesized by Thermal Evaporation,” Chem. Phys. Lett. 337 (2001) 18-24.
[29] Z. W. Pan, Z. R. Dai, L. Xu, S. T. Lee, and Z. L. Wang, “Temperature-Controlled Growth of Silicon-Based Nanostructures by Thermal Evaporation of SiO Powders,” J. Phys. Chem. B 105 (2001) 2507-2514.
[30] R. S. Wanger and W. C. Ellis, “Vapor-Liquid-Solid Mechanism of Single Crystal Growth,” Appl. Phys. Lett. 4 (1964) 89-90.
[31] H. F. Yan, Y. J. Xing, Q. L. Hang, D. P. Yu, Y. P. Wang, J. Xu, Z. H. Xi, and S. Q. Feng, “Growth of Amorphous Silicon Nanowires via a Solid-Liquid-Solid Mechanism,” Chem. Phys. Lett. 323 (2000) 224-228.
[32] M. Lu, M. K. Li, L. B. Kong, X. Y. Guo, and H. L. Li, “Silicon Quantum-Wires Arrays Synthesized by Chemical Vapor Deposition and its Micro-Structural Properties,” Chem. Phys. Lett. 374 (2003) 542-547.
[33] K. J. Wang, K. X. Wang, H. Zhang, G. D. Li, and J. S. Chen, “Self-Oriented Single Crystalline Silicon Nanorod Arrays through a Chemical Vapor Reaction Route,” J. Phys. Chem. C 114 (2010) 2471-2475.
[34] H. Hamidinezhad, Y. Wahab, Z. Othaman, and A. K. Ismail, “Synthesis and Analysis of Silicon Nanowire Below Si–Au Eutectic Temperatures Using Very High Frequency Plasma Enhanced Chemical Vapor Deposition,” Appl. Surf. Sci. 257 (2011) 9188– 9192.
[35] Y. H. Tang, Y. F. Zhang, N. Wang, C. S. Lee, and X. D. Han, “Morphology of Si Nanowires Synthesized by High-Temperature Laser Ablation,” J. Appl. Phys. 85 (1999) 7981.
[36] N. Fukata, S. Matsushita, N. Okada, J. Chen, T. Sekiguchi, N. Uchida, and K. Murakami, “Impurity Doping in Silicon Nanowires Synthesized by Laser Ablation,” Appl. Phys. A 93 (2008) 589–592.
[37] Y. F. Zhang, Y. H. Tang, N. Wang, D. P. Yu, C. S. Lee, I. Bello, and S. T. Lee, “Silicon Nanowires Prepared by Laser Ablation at High Temperature,” Appl. Phys. Lett. 72 (1998) 1835.
[38] K. Peng, M. Zhang, A. Lu, N. B. Wong, R. Zhang, and S. T. Lee, “Ordered Silicon Nanowire Arrays via Nanosphere Lithography and Metalinduced Etching,” Appl. Phys. Lett. 90 (2007) 163123.
[39] Z. Huang, X. X. Zhang, M. Reiche, L. F. Liu, W. Lee, T. Shimizu, S. Senz, and U. Gösele, “Extended Arrays of Vertically Aligned Sub-10 nm Diameter [100] Si Nanowires by Metal-Assisted Chemical Etching,” Nano. Lett. 8 (2008) 3046-3051.
[40] T. Wells, M. M. E. Gomati, and J. Wood, “Low Temperature Reactive Ion Etching of Silicon with SF6/O2 Plasmas,” J. Vac. Sci. Technol. B15 (1997) 397.
[41] Y. H. Pai, F. S. Meng, C. J. Lin, H. C. Kuo, S. H. Hsu, Y. C. Chang, and G. R. Lin, “Aspect-Ratio-Dependent Ultra-Low Reflection and Luminescence of Dry-Etched Si Nanopillars on Si Substrate,” Nanotechnology. 20 (2009) 035303-1~035303-7.
[42] C. M. Hsu, S. T. Connor, M. X. Tang, and Y. Cui, “Wafer-Scale Silicon Nanopillars and Nanocones by Langmuir-Blodgett Assembly and Etching,” Appl. Phys. Lett. 93 (2008) 133109-1~133109-3.
[43] Zhu, Z. F. Yu, S. H. Fan, and Y. Cui, “Nanostructured Photon Management for High Performance Solar Cells,” Mat. Sci. Eng. R 70 (2010) 330-340.
[44] K. Peng, M. Zhang, A. Lu, N. B. Wong, R. Zhang, and S. T. Lee, “Ordered Silicon Nanowire Arrays via Nanosphere Lithography and Metal-Induced Etching,” Appl. Phys. Lett. 90 (2007) 163123.
[45] S. L. Cheng, C.H. Lo, C.F. Chuang, and S.W. Lee, “Site-Controlled Fabrication of Dimension-Tunable Si Nanowire Arrays on Patterned (001) Si Substrates,” Thin. Solid. Films 520 (2012) 3309–3313.
[46] B. E. Deal, and A. S. Grove, “General Relationship for the Thermal Oxidation of silicon,” J. Appl. Phys. 36 (1965) 3770-3778.
[47] D. B. Kao, J. P. Mcvittie, W. D. Nix, and K. C. Saraswat, “Two-Dimensional Thermal Oxidation of Silicon-I. Experiments,” IEEE. T. Electron. Dev ED-34 (1987) 1008-1017.
[48] E. H. Nicollian, and A. Reisman, “A New Model for the Thermal Oxidation Kinectics od Silicon,” J. Elec Mater, 17 (1988) 4.
[49] E. A. IRENE, and R. GHEZ, “ Thermal Oxidation of Silicon: New Experimental Results and Models,” Appl. Surf. Sci. 30 (1987) 1-16.
[50] T. Watanabe, and I. Ohdomari, “A Kinetic Equation for Thermal Oxidation of Silicon Replacing the Deal–Grove Equation,” J. Elec. Soc (2007) G270-G276.
[51] G. Stan, S. Krylyuk, A. V. Davydov, and R. F. Cook, “Compressive Stress Effect on the Radial Elastic Modulus of Oxidized Si Nanowires,” Nano. Lett. 10 (2010) 2031-2037.
[52] H. l. Liu, D. K. Biegelsen, N. M. Johnson, F. A. Ponce, and R. F. W. Pease, “Self-Limiting Oxidation of Si Nanowires,” J. Vac. Sci. Technol. B 11 (1993) 2532-2537.
[53] R. G. Mertens, K. B. Sundaram, “Mathematical Characterization of Oxidized Crystalline Silicon Nanowires Grown by Electroless Process,” Appl. Surf. Sci. 258 (2012) 4607–4613.
[54] C. C. Buttner, and M. Zacharias, “Retarded Oxidation of Si Nanowires” Appl. Phys. Lett. 89 (2006) 263106-1 – 263106-3.
[55] D. Shir, B. Z. Liu, A. M. Mohammad, K. K. Lew, and S. E. Mohney, “Oxidation of silicon Nanowires,” J.Vac. Sci. Technol. B24 (2006) 1333-1336.
[56] R. S. Wagner and W. C. Ellis, “Vapor-Liquid-Solid Mechanism of Single Crystal Growth,” Appl. Phys. Lett. 4 (1964) 89.
[57] D. L. Dheeraj, H. L. Zhou, A.F. Moses, T. B. Hoang, A. T. J. van Helvoort, B. O. Fimland, and H. Weman, “Heterostructured III-V Nanowires with Mixed Crystal Phases Grown by Au-Assisted Molecular Beam Epitaxy,” Paola Prete (ed), Nanowires, InTech, 2010.
[58] V. Schmidt, S. Senz, and U. Gösele, “Diameter-Dependent Growth Direction of Epitaxial Silicon Nanowires,” Nano. Lett. (2005) 931-935.
[59] E. K. Lee, B. L. Choi, Y. D. Park, Y. Kuk, S. Y. Kwon, and H. J. Kim, “Device Fabrication with Solid–Liquid–Solid Grown Silicon Nanowires,” Nanotechnology . 19 (2008) 185701.
[60] Y. J. Xing, Z. H. Xi, D. P. Yu, Q. L. Hang, H. F. Yan, S. Q. Feng, and Z. Q. Xue, “Growth of Silicon Nanowires by Heating Si Substrate,” Chin. Phys. Lett. 19 (2002) 240-242.
[61] D. P. Yu, Y. J. Xing, Q. L. Hang, H. F. Yan, J. Xu, Z. H. Xi, and S. Q. Feng, “Controlled Growth of Oriented Amorphous Silicon Nanowires via a Solid-Liquid-Solid (SLS) Mechanism,” Phys. E 9 (2001) 305-309.
[62] N. Wang, Y. H. Tang, Y. F. Zhang, C. S. Lee, and S. T. Lee, “Nucleation and Growth of Si Nanowires from Silicon Oxide,” Phys. Rev. B 8 (1998) 58.
[63] T. Y. Tan1, S. T. Lee, and U. Gösele, “A Model for Growth Directional Features in Silicon Nanowires,” Appl. Phys. A 74 (2002) 423–432.
[64] Y. F. Zhang, Y. H. Tang, H. Y. Peng, N. Wang, C. S. Lee, I. Bello, and S. T. Lee, “Diameter Modification of Silicon Nanowires by Ambient Gas,” Appl. Phys. Lett. 75 (1999) 1842-1844.
[65] X. H. Fan, L. Xu, C. P. Li, Y. F. Zheng, C. S. Lee, and S. T. Lee, “Effects of Ambient Pressure on Silicon Nanowire Growth,” Chem. Phys. Lett. 334 (2001) 229-232.
[66] R. Q. Zhang, Y. Lifshitz, and S. T. Lee, “Oxide-Assisted Growth of Semiconducting Nanowires”, Adv. Mater. 15 (2003) 7-8.
[67] K. Q. Peng, Y. J. Yan, S. P. Gao, and J. Zhu, “Synthesis of Large-Area Silicon Nanowire Arrays via Self-Assembling Nanoelectrochemistry,” Adv. Mater. 14 (2002) 1164-1167.
[68] K. Tsujino and M. Matsumura, “Morphology of Nanoholes Formed in Silicon by Wet Etching in Solutions Containing HF and H2O2 at Different Concentrations Using Silver Nanoparticles as Catalysts,” Electrochimica. Acta 53 (2007) 28–34.
[69] M.L. Zhang, K. Q. Peng, X. Fan, J. S. Jie, R. Q. Zhang, S. T. Lee, and N. B. Wong, “Preparation of Large-Area Uniform Silicon Nanowires Arrays through Metal-Assisted Chemical Etching,” J. Phys. Chem. C 112 (2008) 4444-4450.
[70] L. Lin, S. Guo, X. Sun, J. Feng, and Y. Wang, “Synthesis and Photoluminescence Properties of Porous Silicon Nanowire Arrays,” Nano. Res. Lett. 5 (2010) 1822-1828.
[71] B. Ozdemir, M. Kulakci, R. Turan, and H. E. Unalan, “Effect of Electroless Etching Parameters on the Growth and Reflection Properties of Silicon Nanowires,” Nanotechnology 22 (2011) 155606.
[72] Z. Huang, N. Geyer, P. Werner, J. de Boor, and U Gösel, “ Metal-Assisted Chemical Etching of Silicon: A Review,” Adv. Mater. 23 (2011) 258-308.
[73] X. Li and P. W. Bohn, “Metal-Assisted Chemical Etching in HF/H2O2 Produces Porous Silicon,” Appl. Phys. Lett. 77 (2000) 2572-2574.
[74] N. Megouda, T. Hadjersi, G. Piret, R. Boukherroub, and O. Elkechai, “Au-Assisted Electroless Etching of Silicon in Aqueous HF/H2O2 Solution,” Appl. Surf. Sci. 255 (2009) 6210–6216.
[75] H. Fang, Y. Wu, J. Zhao, and J. Zhu, “Silver Catalysis in the Fabrication of Silicon Nanowire Arrays,” Nanotechnology 17 (2006) 3768-3774.
[76] V. Canpean and S. Astilean, “Extending Nanosphere Lithography for the Fabrication of Periodic Arrays of Subwavelength Metallic Nanoholes,” Mater. Lett. 63 (2009) 2520–2522.
[77] K. H. Lee, Q. L. Chen, C. H. Yip, Q. F. Yan, and C. C. Wong, “Fabrication of Periodic Square Arrays by Angle-Resolved Nanosphere Lithography,” Microelectronic Eng. 87 (2010) 1941–1944.
[78] J. H. Leea, Y. W. Chung, M. H. Honb, and I. C. Leu, “Fabrication of Tunable Pore Size of Nickel Membranes by Electrodeposition on Colloidal Monolayer Template,” J. Alloy. Compd. 509 (2011) 6528–6531.
[79] G. M. Whitesides, J. P, Mathias, and C. T. Seto, “Molecular Self-Assembly and Nanochemistry: A Chemical Strategy for the Synthesis of Nanostructures,” Science. 254 (1991) No. 5036 1312-1319.
[80] S. M. Douglas, H. Dietz, T. Liedl, B. Högberg, F. Graf, and W. M. Shih, “Self-Assembly of DNA into Nanoscale Three-Dimensional Shapes,” Nature. 459 (2009) 414-418.
[81] C. Pacholski, A. Kornowski, and H. Weller, “Self-Assembly of ZnO: From Nanodots to Nanorods,” Angew. Chem. Int. Ed. 41 (2002) 1188-1191.
[82] J. C. Hulteen and R. P. V. Duyne, “Nanosphere Lithography: A Materials General Fabrication Process for Periodic Particle Array Surfaces,” J. Vac. Sci. Technol. A 13 (1995) 1553-1558.
[83] G. M. Whitesides and B. Grzybowski, “Self-Assembly at All Scales,” Science. 295 (2002) 2418-2421.
[84] Y. Xia, B. Gates, Y. Yin, and Y. Lu, “Monodispersed Colloidal Spheres: Old Materials with New Applications,” Adv. Mater. 12 (2000) 693-713.
[85] A.S. Dimitrov and K. Nagayama, “Continuous Convective Assembling of Fine Particles into Two-Dimensional Arrays on Solid Surfaces,” Langmuir 12 (1996) 1303-1311.
[86] J. C. Hulteen and R. P. V. Duyne, “Nanosphere Lithography: A Materials General Fabrication Process for Periodic Particle Array Surfaces,” J. Vac. Sci. Technol. A 13 (1995) 1553-1558.
[87] Micheletto, H. Fukuda, and M. Ohtsu, “A Simple Method for the Production of a Two-Dimensional, Ordered Array of Small Latex Particles,” Langmuir. 11 (1995) 3333-3336.
[88] J. Rybczynski, U. Ebels, and M. Giersig, “Large-Scale, 2D Arrays of Magnetic Nanoparticles,” Colloids and Surfaces A: Physicochem. Eng. Aspects. 219 (2003) 1-6.
[89] H. Li, J. Low, K. S. Brown, and N. Wu, “Large-Area Well-Ordered Nanodot Array Pattern Fabricated with Self-Assembled Nanosphere Template,” IEEE Sensors J. 8 (2008) 880-884.
[90] J. Aizenberg, P. V. Braun, and P. Wiltzius, “Patterned Colloidal Deposition Controlled by Electrostatic and Capillary Forces,” Phys. Rev. Lett. 84 (2000) 2997-3000.
[91] Z. Huang, H. Fang, and J. Zhu, “Fabrication of Silicon Nanowire Arrays with Controlled Diameter, Length, and Density,” Adv. Mater. 19 (2007) 744-748.
[92] B. Fuhrmann, H. S. Leipner, H. R. Höche, L. Schubert, P. Werner, and U. Gösele, “Ordered Arrays of Silicon Nanowires Produced by Nanosphere Lithography and Molecular Beam Epitaxy,” Nano. Lett. 5 (2005) 2524-2527.
[93] K. Q. Peng, M. L. Zhang, A. J. Lu, N. B. Wong, R. Q. Zhang, and S. T. Lee, “Ordered Silicon Nanowire Arrays via Nanosphere Lithography and Metal-Induced Etching,” Appl. Phys. Lett. 90 (2007) 163123.
[94] X. C. Li, K. Liang, B. K. Tay, and E. H. T. Teo, ” Morphology-Tunable Assembly of Periodically Aligned Si Nanowire and Radial pn Junction Arrays for Solar Cell Applications,” Appl. Surf. Sci. 258 (2012) 6169–6176.
[95] S. J. Chang, T. J. Hsueh, I C. Chen, S. F. Hsieh, S. P. Chang, C. L. Hsu, Y. R. Lin, and B. R. Huang, “Highly Sensitive ZnO Nanowire Acetone Vapor Sensor With Au Adsorption,” IEEE T Nanotechnol. 7 (2008) 754-759.
[96] Q. Qia, T. Zhang, L. Liu, X. J. Zheng, Q. J. Yu, Y. Zeng, and H. B. Yang, “Selective Acetone Sensor Based on Dumbbell-Like ZnO with Rapid Response and Recovery,” Sensor. Actuat. B-Chem 134 (2008) 166–170.
[97] Parthibavarman, V. Hariharan, and C. Sekar, “High-Sensitivity Humidity Sensor Based on SnO2 Nanoparticles Synthesized by Microwave Irradiation Method,” Mat. Sci. Eng. C-Mater 31 (2011) 840–844.
[98] S. C. Lee, S. Y. Kim, W. S. Lee, S. Y. Jung, B. W. Hwang, D. Ragupathy, D. D. Lee, S. Y. Lee, and J. C. Kim, “Effects of Textural Properties on the Response of a SnO2-Based Gas Sensor for the Detection of Chemical Warfare Agents,” Sensors. 11 (2011) 6893-6904.
[99] Y. Li, J. Liang, Z. L. Tao, and J. Chen, “CuO Particles and Plates: Synthesis and Gas-Sensor Application,” Mater. Res. Bull. 43 (2008) 2380–2385.
[100] P Samarasekara, N. T. R. N. Kumara, and N. U. S. Yapa, “Sputtered Copper Oxide (CuO) Thin Films for Gas Sensor,” J. Phys.: Condens. Matter. 18 (2006) 2417–2420.
[101] M. Tonezzer, N. V. Hieu, “Size-Dependent Response of Single-Nanowire Gas Sensors,” Sensor. Actuat. B-Chem. 163 (2012) 146–152
[102] Y. Cui, Q. Wei, H. Park, C. M. Lieber, “Nanowire Nanosensors for Highly Sensitive and Selective Detection of Biological and Chemical Species,” Science. 293 (2001) 1289.
[103] G. G. Salgado, T. D. Becerril, H. J. Santiesteban, and E. R. Andre´s, “Porous Silicon Organic Vapor Sensor,” Opt. Mater. 29 (2006) 51–55.
[104] X. Chena, C. K. Y. Wonga, C. A. Yuanc, G. Zhanga, “Nanowire-Based Gas Sensors,” Sensor. Actuat. B 177 (2013) 178–195.
[105] F. Demami, L. Ni, R. Rogel, A. C. Salaun, L. Pichon, “Silicon Nanowires Synthesis for Chemical Sensor Applications,” Procedia. Engineering. 5 (2010) 351-354.
[106] A. A. Talin, L. L. Hunter, F. Léonard, and B. Rokad, “Large Area, Dense Silicon Nanowire Array Chemical Sensors,” Appl. Phys. Lett. 89 (2006) 153102.
[107] K. Q. Peng, X. Wang, and S. T. Lee, “Gas Sensing Properties of Single Crystalline Porous Silicon Nanowires,” Appl. Phys. Lett. 95 (2009) 243112.
[108] S. Y. Chien, C. P. Chen, H. L. Sung, Y. M. Shang, “Effects of Silicon Nanowire Array Fabricated by Spontaneous Electrochemical Reaction on Volatile Organic Solvent Sensing,” IEEE 4th international (2011).
[109] S. L. Cheng, C. Y. Chen, and S. W. Lee, “Kinetic Investigation of the Electrochemical Synthesis of Vertically-Aligned Periodic Arrays of Silicon Nanorods on (001) Si Substrate,” Thin Solid Films 518 (2010) S190–S195.
[110] D. B. Kao, J. P. Mcvittie, W. D. Nix, and K. C. Saraswat, “Two-Dimensional Thermal Oxidation of Silicon-II. Experiments,” IEEE. T. Electron. Dev ED-35 (1988) 25-37.
[111] R. K. Joshi and A. Kumar, “Room Temperature Gas Detection Using Silicon Nanowires,” Mater. Today 4 (2011) 52.
[112] S. J Kim, S. H. Lee, and C. J. Lee, “Organic Vapour Sensing by Current Response of Porous Silicon Layer,” Appl. Phys. 34 (2001) 3505–3509.
[113] G. Salgado, T. D ́ıaz Becerril, H. J. Santiesteban, E. R. Andre ́s, “Porous silicon organic vapor sensor,” Opt. Mater. 29 (2006) 51–55.
[114] H. J. In, C. R. Field, and P. E. Pehrsson, “Periodically Porous Top Electrodes on Vertical Nanowire Arrays for Highly Sensitive Gas Detection,” Nanotechnology 22 (2011) 355501.
[115] C. R. Field, H. J. In, N. J. Begue, and P. E. Pehrsson, “Vapor Detection Performance of Vertically Aligned, Ordered Arrays of Silicon Nanowires with a Porous Electrode,” Anal. Chem. 83 (2011) 4724-4728.
[116] J. Wang, S. R. Yang, Z. Shu, B. R. Lu, S. Q. Xie, Y. Chen, E. Huq, R. Liu, X. P. Qu, “Silicon Nanowire Sensor for Gas Detection Fabricated by Nanoimprint on SU8/SiO2/PMMA Trilayer,” Microelectronic ENG 86 (2009) 1238-1242.
[117] L. Yang, H. Lin, Z. Zhang, L. Cheng, S. Ye, and M. Shao, “Gas sensing of tellurium-modified silicon nanowires to ammonia and propylamine,” Sensor. Acruat. B 177 (2013) 260-264.
[118] 孫鵬, 胡明, 李明達, 和馬雙雲, “介孔矽與大孔矽的結構、電學和氣敏特性。” Acta. Phys.-Chim. Sin, 28 (2) (2012) 489-493.