| 研究生: |
張烈堂 Lieh-Tang Chang |
|---|---|
| 論文名稱: |
基因演算法於建構臺指選擇權投資組合的應用 Apply Genetic Algorithm to Taiwan Index Option Portfolio |
| 指導教授: |
陳稼興
Jiah-Shing Chen |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
管理學院 - 資訊管理學系 Department of Information Management |
| 畢業學年度: | 93 |
| 語文別: | 中文 |
| 論文頁數: | 63 |
| 中文關鍵詞: | 資金分配策略 、投資組合 、基因演算法 、選擇權 |
| 外文關鍵詞: | Option, Genetic Algorithm, Portfolio, Fund allocation strategy |
| 相關次數: | 點閱:10 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
由於台指選擇權市場的蓬勃發展,顯示台灣投資大眾漸漸能夠接受這種新興投資方式,因此本研究試圖使用人工智慧方法中的組合編碼基因演算法,建構由台指選擇權所組成的投資組合,藉由基因演算法強大的演化求解能力,求出投資組合的最適資金配置方式。
相較於證券等金融商品,選擇權的生命週期是相當短的,依到期日長短而定,最長不會超過8個月,而過去研究多未使用長天期的訓練資料,在演化的成效上是值得懷疑的,因此本研究也嘗試使用三種不同的資料處理方法串接選擇權歷史資料,理論上,可以由當日一直串接此選擇權的歷史資料至選擇權市場最初始的交易日,在交易期間上,我們選擇2003年至2004年台指選擇權交易資料做為實驗資料,在績效評估上,與平均分配資金策略與基因演算法所產生的資金分配策略比較。研究結果發現,平均而言基因演算法所產生的資金分配策略報酬率略優於平均分配資金策略,但在統計上並未有顯著優勢,另一方面,在比較各種不同歷史資料串接方法後,結果顯示,以選擇權的實際價格和理論價格之間的差距進行昇冪排序串接歷史資料,所獲得的績效最佳,同時也說明價值被低估的買權,其獲得正報酬率的機率較高。
Due to the growth of Taiwan Index Option (TXO) market, it is a new way to investment in Taiwan. This paper uses Combine Encode Genetic Algorithm to set up a portfolio which is composed of TXO options and to solve the fund allocation problem in TXO options portfolio.
Compare to other securities, the life cycle of options is very short, depends on the expiration date, it varies from one month to eight month. The history data used before is too few to trust the result of GA. This paper uses three different methods to process option history data. In theory, the option history data can be expended to the first trading day of TXO market. Compare to original history, we can provide more data in GA evolution process.
We select the TXO trading data from 2003 to 2004. We compare the portfolio performance between the GA’s strategy and the equally fund allocation strategy. The results show that the GA’s strategy can defect the equally fund allocation strategy, but in some cases, the statistic test result can not support this conclusion. In addition to the statistic test result, we also compare these different option history process methods, the result indicates that the best performance of all is the “ascend sort of the difference between option’s actual and theorical premium” method. It also indicates that the possibility of positive return of an option is high if that option’s value is underestimated.
中文部分:
[余美惠,民86] 余美惠,「以基因演算法建構外匯選擇權組合之實證研究」,國立台灣大學國際企業學系碩士論文,民國八十六年。
[侯佳利,民90] 侯佳利,「組合編碼遺傳演算法於投資組合及資金分配之應用」,國立中央大學資訊管理學系碩士論文,民國九十年。
[林萍珍,民86] 林萍珍,「遺傳演算法在使用者導向的投資組合選擇之應用」,國立中央大學資訊管理學系碩士論文,民國八十六年。
[徐崇禮,民90] 徐崇禮,「模擬股票選擇權避險策略最佳化系統」,元智大學資訊管理學系碩士論文,民國九十年。
[臺灣期貨交易所 2005],http://www.taifex.com.tw/chinese/home.htm
英文部份:
[Black, 1973] Black, Scholes. “The Pricing of Options and Corporate Liabilities,” Journal of Political Economy, 1973, Vol. 81 Issue 3, p637.
[Markowitz, 1952] Markowitz, H.M.. “Portfolio Selection,” Journal of Finance, Vol. 7, 1952, pp. 77-91.
[Blomvall, 2003] Blomvall, Lindberg. “Back-testing the performance of an actively managed option portfolio at the Swedish Stock Market, 1990–1999,” Journal of Economic Dynamics & Control, Apr 2003, Vol. 27 Issue 6, p1099.
[Booth, 1985] Booth, Tehranian and Trennepohl. “Efficiency Analysis and Option Portfolio Selection,” Journal of Financial & Quantitative Analysis, Dec 1985, Vol. 20 Issue 4, p435.
[Chen, 1997] Chen Shu-Heng, Lee Who-Chiang. “Option Pricing with Genetic Algorithms: Separating Out-of-the-Money from In-the-Money.”, IEEE International Conference on Intelligent Processing Systems, 1997.
[Davis, 1985] Davis L.. “Applying adaptive algorithms to epistatic domains.”, In Proceedings of the International Joint Conference on Artificial Intelligence, pages 162–164, 1985.
[Luenberger, 1998] Luenberger David G... “Investment Science” Oxford University Press, 1998.
[Fama, 1965] Fama. “The behavior of stock-market prices”, Journal of Business 38, p34-105.
[Godlberg, 1989] Goldberg D. and Lingle R.. “Alleles, loci, and the traveling salesman problem.”, In Proceedings of the First International Conference on Genetic Algorithms and Their Applications, pages 154–159, 1985.
[Goldberg, 1994] Goldberg, D.E.. “Genetic and Evolutionary Algorithms Come of Age.”, communications of the ACM, Vol. 37, 1994, pp.2-3.
[Grace, 2000] Grace Bruce K.. “Black-Scholes option pricing via genetic algorithms.”, Applied Economics Letters, 2000, 7, pp129-132.
[Holland, 1975] Holland J. H.. “Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence”, MIT Press, 1st MIT Press edition, 1992. University of Michigan Press, 1st edition, 1975.
[Mitchell, 1996] Mitchell, M., An Introduction to Genetic Algorithms, MIT Press,
1996.
[Papahristodoulou, 2004] Papahristodoulou, Christos, “Option strategies with linear programming,” European Journal of Operational Research, Aug2004, Vol. 157 Issue 1, p246.
[Oliver, 1987] Oliver I., Smith D., and Holland J.. “A study of permutation crossover operators on the traveling salesman problem.”, In Proceedings of the Second International Conference on Genetic Algorithms and Their Applications, pages 224–230, 1987.
[Syswerda, 1991] Syswerda G.. “Schedule optimization using genetic algorithms.”, In L. Davis, editor, Handbook of Genetic Algorithms, pages 332–349. Van Nostrand Reinhold, 1991.
[Vacca, 1997] Vacca, L., “Managing options risk with genetic algorithms,” Computational Intelligence for Financial Engineering (CIFEr), 1997., Proceedings of the IEEE/IAFE 1997 , 24-25 March 1997, pp29 - p35.