| 研究生: |
楊宇智 Ue-Zhi Yang |
|---|---|
| 論文名稱: |
佈植碳離子於氮化鎵/氮化銦鎵多重量子井發光二極體之特性研究 Photoluminescence studies of Carbon-Implanted GaN/InGaN M.Q.W. LED |
| 指導教授: |
李清庭
C. T. Lee 許進恭 Jinn-Kong Sheu |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 光電科學與工程學系 Department of Optics and Photonics |
| 畢業學年度: | 93 |
| 語文別: | 中文 |
| 論文頁數: | 65 |
| 中文關鍵詞: | 佈植 、碳 、氮化鎵 、發光二極體 、光激發光譜 、黃光發射 |
| 外文關鍵詞: | Carbon, yellow luminescence, GaN, LED, photoluminescence |
| 相關次數: | 點閱:18 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文實驗在研究碳離子佈值於氮化鎵/氮化銦鎵多重量子井發光二極體之特性研究,以30keV、55keV、130keV 不同能量佈植,形成5×1016,5×1018 cm-3不同佈植濃度,佈植在氮化鎵/氮化銦鎵多重量子井發光二極體上濃度為5×1017cm-3 之P型氮化鎵,藉以形成碳離子佈植後的黃光發射特性,進而達成藍黃雙光渾成之白光發光二極體之製作技術開發。
光特性方面,利用光激發光譜(photoluminescence)的量測顯示,隨著碳離子佈植濃度的大於p型氮化鎵摻雜鎂的濃度時,本身p型氮化鎵的藍光發光機制(2.8eV)減弱,並開始有黃光放射的發光機制生成,而配合適合熱處理的修復,得到1050oc為最佳黃光放射修復溫度。
在電性方面, 根據霍爾效應特性量測(Hall effect
measurement)顯示,佈植的碳離子濃度一旦大於p型氮化鎵的電洞濃度10倍以上,試片轉變為n 型的氮化鎵。
發光二極體製作方面,由於P型氮化鎵被佈植區域因離子轟擊所造成損害及高濃度佈植轉變為n型之考量,本文採用網狀方格佈植結構的P型電極設計製作碳離子佈植於氮化鎵/氮化銦鎵多重量子井發光二極體,經發光二極體元件完成後量測其電激發光光譜,確實量得碳離子佈植所形成之黃光放射,證明以佈植方式形成白光二極體的可
能性。
The photoluminescence properties of Carbon ion
implantation into p-type GaN followed by rapid thermal annealing (RTA) in N2 ambient have been studied. By varying implantation concentrations, the p-type GaN can be converted into n-type GaN. Photoluminescence studies show that a green emission band could be observed from Cimplanted
GaN:Mg. It was shown that such a green emission
is related to the yellow luminescence observed from epitaxially grown C-doped GaN. The fabrication and characterization of C-implanted InGaN /GaN MQW LED was reported. The EL spectra obtained from the C-implanted LED device operated at 8V exists the peaks centered at
458nm and 525nm.
[1]S. O. Kucheyev, M. Toth , M. R. Phillips, J. S. Williams, C.
Jagadish, G. Li, ”chemical origin of the yellow luminescence
in GaN”, J. Appl. Phys. 91, 5867 (2002).
[2]T. Suski, P. Perlin, H. Teisseyre, M. Leszczynski, I. Grzegory,
J. Jun, M. Bockowski, S. Porowski, T. D.
Moustakas , ”Mechanism of yellow luminescence in GaN”, Appl.
Phys. Lett. 67(15), 2188 (1995).
[3] C. H. Seager, A. F. Wright, J. Yu, W. Gotz, “Role of carbon
in GaN”, J. Appl. Phys. 92, 6553 (2002).
[4] R. Armitage, William Hong, Qing Yang, H. Feick, J. Gebauer,
E. R. Weber, S. Hautakangas and K. Saarinen, " Contributions
from gallium vacancies and carbon-related defects to
the ”yellow luminescence” in GaN”, Appl. Phys. Lett.
82(20), 3457(2003).
[5] J. K. Sheu, M. L. Lee, C. J. Tun, C. J. Kao, L. S. Yeh, S.
J. Chang, G. C. Chi, “Characterization of Si Implants in
p-Type GaN”, IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM
ELECTRONICS, VOL.8, NO4, JUNLY/AUGUST (2002).
[6]江博仁, ”矽離子佈植於p 型氮化鎵之特性研究”, 中央大學光電
所, 碩士論文(2002).
[7]C. T. Lee, and H. W. Kao, “Long-term thermal stability of
34
Ti/Al/Pt/Au Ohmic contacts to n -type GaN” , Appl.Phys. Lett.
76, 2364(2000)
[8] 曾建雄, ”硫化處理對P 型氮化鎵與透明電極歐姆接觸特性之研
究”, 中央大學光電所, 碩士論文 (2002).
[9]高孝維, ”N型氮化鎵高熱穩定性歐姆接觸之研究”, 中央大學光電
所, 碩士論文 (1999).
[10]黃宏基, ”P型氮化鎵歐姆接觸製作研究”, 中央大學光電所,碩
士論文 (2000).
[11]Hyunsoo Kim, Seong-Ju Park, Hyunsang Hwang, Nae-Man Park,
“Lateral current transport path, a model for GaN-based
light-emitting diodes:Applications to practical device
designs”, Appl. Phys. Lett. 81, 1326 (2002).
[12]Hyunsoo Kim, Seong-Ju Park, Hyunsang Hwang, “Design and
Fabrication of Highly Efficient GaN-Based Light-Emitting
Diodes”, IEEE TRANSACTIONS ON ELECTRON DEVICES, VOL.49,
NO.10, OCTOBER (2002)
[13]A. Ebong, S. Arthur, E. Doweny, X. A. Cao, S. LeBoeuf, D. W.
Merfeld, “Device and circuit modeling of GaN/InGaN light
emitting diodes (LEDs) for optimum current spreading”,
Solid-State Electronics 47,1817(2003)
[14] J. F. Muth, J. H. Lee, I. K. Shmagin, R. M. Kolbas, H. C.
Casey, Jr., B. P. Keller, U. K. Mishra, and S. P. DenBaars,
“Absorption coefficient, energy gap, exciton binding energy
and recombination lifetime of GaN obtained from transmission
35
measurements”, Appl. Phys. Lett. 71, 2572 (1997).
[15] U. Kaufmann, M. Kunzer, M. Maier, H. Obloh, A. Ramakrishnan,
B. Santic, and P. Schlotter, “Nature of the 2.8 eV
photoluminescence band in Mg doped GaN”, Appl. Phys. Lett.
72, 1326 (1998).
[16] Jorg Neugebauer and Chris G. Van de Walle, ”Gallium
vacancies and the yellow luminescence in GaN”, Appl. Phys.
Lett.69, 503 (1996).
[17] 邵勝添, ”佈植氮離子與碳離子於未摻雜氮化鎵之特性研究”,
中央大學光電所,碩士論文 (2003).
[18] C. J. Eiting, P. A. Grudowski, R. D. Dupuis, H. Hsia, Z. Tang,
D.Becher, H. Kuo, G. E. Stillman, and M. Feng, “Activation
studies of low-dose Si implants in gallium nitride”, Appl.
Phys. Lett. 73, 3875 (1998).
[19]Chang-Cheng Chuo, Chia-Ming Lee, Jen-Inn Chyi,
“Interdiffusion of In and Ga in InGaN/GaN multiple quantum
wells”, Appl. Phys. Lett. 78, 314 (2001).