| 研究生: |
鄭祥佑 Hsiang-You Chang |
|---|---|
| 論文名稱: |
砷化銦量子點及應力緩衝層中加入銻之光學特性研究 Study on Optical Properties of InAs Quantum Dots and Strain Reducing Layers with Antimony Incorporation |
| 指導教授: | 綦振瀛 |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
資訊電機學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2025 |
| 畢業學年度: | 113 |
| 語文別: | 中文 |
| 論文頁數: | 68 |
| 中文關鍵詞: | 分子束磊晶 、量子點 、砷化鎵 、砷化銦 |
| 相關次數: | 點閱:10 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文研究以銻砷化銦鎵做為應力減緩層,對砷化銦量子點產生的影響。藉由光致發光實驗我們觀察到覆蓋銻砷化銦鎵應力減緩層的量子點發光波長會隨銦及銻成分的增加產生紅移,但超過其成分限制時會導致發光效率變差。此外,低溫光致發光量測結果顯示,應力減緩層中加入銻後,銻能提升能帶,導帶能障差異(ΔEc)因此提高,降低載子在高溫時獲得能量進行熱逃逸的機率,顯著提升了發光效率。
接下來我們嘗試將銻加入量子點內,形成銻砷化銦量子點,但由於晶格常數變大,使量子點頂部所受應力增加,形成凹陷,且銻的表面活性化效應造成量子點高度下降,使發光波長產生藍移。因此改用生長完量子點後濺撒銻的方式,做砷跟銻的置換,結果顯示不但能保持量子點原本的型態,還能利用銻砷化銦能隙較小的特性,使波長紅移到1405 nm。
最後,為了能將量子點實際應用到VCSEL元件中,我們製作PIN二極體,驗證其電流特性,並生長符合本實驗量子點波段範圍的DBR結構,未來能夠以此基礎在量子點上下生長DBR並製作完整的VCSEL元件。
In this work, we investigate the effects of using InGaAsSb as a strain reducing layer for InAs quantum dots. Photoluminescence measurements reveal that the emission wavelength of quantum dots covered with an InGaAsSb strain reducing layer red-shifts as the indium and antimony compositions increase. However, their emission efficiency degrades when the compositions exceed a certain limit. Furthermore, low-temperature photoluminescence measurements show that the incorporation of antimony into the strain reducing layer raises the conduction band, increases the conduction band offset (ΔEc), and therefore reduces the probability of carrier escape at elevated temperatures, significantly enhancing emission intensity.
Next, we attempted to incorporate antimony into the quantum dots to form InAsSb quantum dots. However, the larger lattice constant of InAsSb increased the strain at the top of the quantum dots, causing the collapse of top of the quantum dots. Additionally, the surfactant effect of the antimony reduced the height of the quantum dots, causing a blueshift in emission wavelength. As an alternative, we employed a post-growth antimony soaking process to facilitate the exchange arsenic atoms with antimony atoms. This approach not only preserved the original shape of the quantum dots but also extended the emission wavelength to 1405 nm due to the narrower bandgap of InAsSb.
In this study, we fabricated PIN diodes with the InAsSb QDs as the active region. A distributed Bragg reflector (DBR) structure that matches the wavelength range of the quantum dots was also prepared. In the future, these foundations can be used to realize electrically pumped 1.4 m QD vertical cavity surface emitting lasers (VCSELs).
[1] Y. Arakawa and H. Sakaki, “Multidimensional quantum well laser and temperature dependence of its threshold current,” Appl. Phys. Lett., vol. 40, iss. 11, pp. 939-942, June 1982.
[2] H. Asahi and Y. Horikoshi, “Molecular Beam Epitaxy: Materials and Applications for Electronics and Optoelectronics,” John Wiley & Sons Ltd, 2019.
[3] T. F. Kuech, “Handbook of Crystal Growth: Thin Films and Epitaxy,” Elsevier, 2015.
[4] J. Byrnes, “Unexploded Ordnance Detection and Mitigation,” Springer, 2009.
[5] K. E. Sautter, K. D. Vallejo, and P. J. Simmonds, “Strain-driven quantum dot self-assembly by molecular beam epitaxy,” J. Appl. Phys., vol. 128, iss. 3, Art. no. 031101, July 2020.
[6] X. Cao, M. Zopf, and F. Ding, “Telecom wavelength single photon sources,” J. Semicond., vol. 40, no. 7, Art. no. 071901, Jan. 2019.
[7] W. Zhan, S. Ishida, J. Kwoen, K. Watanabe, S. Iwamoto and Y. Arakawa, “Emission at 1.6 μm from InAs Quantum Dots in Metamorphic InGaAs Matrix,” Phys. Status Solidi B, vol. 257, iss. 2, Feb. 2020.
[8] R. Beanland, M. Aindow, T. Joyce, P. Kidd, M. Lourenço, and P. Goodhew, “A study of surface cross-hatch and misfit dislocation structure in In0.15Ga0.85As/GaAs grown by chemical beam epitaxy,” J. Cryst. Growth, vol. 149, iss. 1-2, pp. 1-11, April. 1995.
[9] K. Nishi, H. Saito, S. Sugou, and J. S. Lee, “A narrow photoluminescence linewidth of 21 meV at 1.35 μm from strain-reduced InAs quantum dots covered by In0.2Ga0.8As grown on GaAs substrates,” Appl. Phys. Lett., vol. 74, iss. 8, pp. 1111–1113, Feb. 1999.
[10] H. Y. Liu, M. J. Steer, T. J. Badcock, D. J. Mowbray, M. S. Skolnick, F. Suarez, J. S. Ng, M. Hopkinson, and J. P. R. David, “Room-temperature 1.6μm light emission from InAs/GaAs quantum dots with a thin GaAsSb cap layer,” J. Appl. Phys., vol. 99, iss. 4, Art. no. 046104,Feb. 2006.
[11] P. Boulay, “VCSEL industry: a US$3.9 billion market driven by consumer and datacom applications.” yolegroup.com. Accessed: Sep. 2022. [Online.] Available: https://www.yolegroup.com/press-release/vcsel-industry-a-us3-9-billion-market-driven-by-consumer-and-datacom-applications/
[12] A. Babichev, S. Blokhin, E. Kolodeznyi, L. Karachinsky, I. Novikov, A. Egorov, S. C. Tian, and D. Bimberg, “Long-Wavelength VCSELs: Status and Prospects,” Photonics, vol. 10, iss. 3, pp. 268, March 2023.
[13] D. L. Huffaker, D. G. Deppe, K. Kumar, and T. J. Rogers, “Native‐oxide defined ring contact for low threshold vertical‐cavity lasers,” Appl. Phys. Lett., vol. 65, iss. 1, pp. 97–99, July 1994.
[14] C. Y. Jin, H. Y. Liu, S. Y. Zhang, Q. Jiang, S. L. Liew, M. Hopkinson, T. J. Badcock, E. Nabavi, and D. J. Mowbray, “Optical transitions in type-II quantum dots covered by a GaAsSb strain-reducing layer,” Appl. Phys. Lett., vol. 91, iss. 2, Art. no. 021102, July 2007.
[15] W. S. Liu, H. L. Tseng, and P. C. Kuo, “Enhancing optical characteristics of InAs/InGaAsSb quantum dot structures with long-excited state emission at 1.31 μm,” Opt. Express, vol. 22, iss. 16, pp. 18860-18869, July 2014.
[16] J. Tatebayashi, M. Nishioka, and Y. Arakawa, “Over 1.5 μm light emission from InAs quantum dots embedded in InGaAs strain-reducing layer grown by metalorganic chemical vapor deposition,” Appl. Phys. Lett., vol. 78, iss. 22, pp. 3469–3471, May 2001.
[17] P. C. Chiu, W. S. Liu, M. J. Shiau, J. I. Chyi, W. Y. Chen, H. S. Chang, "High Optical Quality of InAs Quantum Dots with an InAlAsSb Strain-Reducing Layer," presented at the 2007 IEEE 19th International Conference on Indium Phosphide & Related Materials, Matsue, Japan, May 14-18, 2007
[18] H. Y. Liu, I. R. Sellers, M. Hopkinson, C. N. Harrison, D. J. Mowbray, and M. S. Skolnick, “Engineering carrier confinement potentials in 1.3-μm InAs/GaAs quantum dots with InAlAs layers: Enhancement of the high-temperature photoluminescence intensity,” Appl. Phys. Lett., vol. 83, iss. 18, pp. 3716–3718, Nov. 2003.
[19] K. Akahane, N. Yamamoto, S. I. Gozu, A. Ueta, and N. Ohtani, “1.5μm emission from InAs quantum dots with InGaAsSb strain-reducing layer grown on GaAs substrates,” Phys. E: Low-Dimens. Syst. Nanostructures, vol. 32, iss. 1–2, pp. 81-84, May 2006.
[20] J. I. Chyi, W. S. Liu, P. C. Chiu, M. J. Shiau, D. M. Kuo, W. Y. Chen, H. S. Chang, and T. M. Hsu, “High Quality InAs Quantum Dots with an In(Ga,Al)AsSb Strain-Reducing Layer for Long Wavelength Photonic Devices,” ECS Trans., vol. 6, iss. 2, pp. 35-40, 2007.
[21] Z. Chen, C. Zhao, X. Zhou, L. Xiao, Z. Li, and Y. Zhang, “A Review of Top-Down Strategies for the Production of Quantum-Sized Materials,” Small Sci., vol. 3, iss. 12, Dec. 2023.
[22] J. M. Ulloa, R. Gargallo-Caballero, M. Bozkurt, M. D. Moral, A. Guzmán, P. M. Koenraad, and A. Hierro, “GaAsSb-capped InAs quantum dots: From enlarged quantum dot height to alloy fluctuations,” Phys. Rev. B, vol. 81, Art. no. 165305, April 2010.
[23] T. Miura, T. Nakai, and K. Yamaguchi, “Atomically-controlled GaSb-termination of GaAs surface and its properties,” Appl. Surf. Sci., vol. 237, iss. 1-4, pp. 242-245, Oct. 2004.
[24] M. Kudo, T. Nakaoka, S. Iwamoto, and Y. Arakawa, “InAsSb Quantum Dots Grown on GaAs Substrates by Molecular Beam Epitaxy,” Jpn. J. Appl. Phys., vol. 44, no. 1, pp. 45-47, Jan. 2005.
[25] M. Yano, H. Yokose, Y. Iwai, and M. Inoue, “Surface reaction of III—V compound semiconductors irradiated by As and Sb molecular beams,” J. Cryst. Growth, vol.111, iss. 1-4, pp. 609-613, May 1991.
[26] H. Miyoshi, R. Suzuki, H. Amano, and Y. Horikoshi, “Sb surface segregation effect on the phase separation of MBE grown InAsSb,” J. Cryst. Growth, vol. 237-239, iss. 2, pp. 1519-1524, April 2002.
[27] H. Y. Liu, I. R. Sellers, M. Gutiérrez, K. M. Groom, R. Beanland, W. M. Soong, M. Hopkinson, J. P. R. David, T. J. Badcock, D. J. Mowbray, and M. S. Skolnick, “Optimizing the growth of 1.3 µm InAs/InGaAs dots-in-a-well structure,” Mater. Sci. Eng. C., vol. 25, iss. 5-8, pp. 779-783, Dec. 2005.
[28] G. Trevisi, L. Seravalli, P. Frigeri, M. Prezioso, J. C. Rimada, E. Gombia, R. Mosca, L. Nasi, C. Bocchi, and S. Franchi, “The effects of quantum dot coverage in InAs/(In)GaAs nanostructures for long wavelength emission,” Microelectron. J., vol. 40, iss. 3, pp. 465-468, March 2009.
[29] R. Songmuang, S. Kiravittaya, and O.G. Schmidt, “Shape evolution of InAs quantum dots during overgrowth,” J. Cryst. Growth, vol. 249, iss. 3-4, pp. 416-421, March 2003.
[30] H. S. Ling and C. P. Lee, “Evolution of self-assembled InAs quantum ring formation,” J. Appl. Phys., vol. 102, iss. 2, Art. no. 024314, July 2007.
[31] R. Timm, A. Lenz, H. Eisele, L. Ivanova, M. Dähne, G. Balakrishnan, D. L. Huffaker, I. Farrer, and D. A. Ritchie, “Quantum ring formation and antimony segregation in GaSb/GaAs nanostructures,” J. Vac. Sci. Technol. B, vol. 26, iss. 4, pp. 1492-1503, Aug. 2008.
[32] D. K. Schroder, “Semiconductor Material and Device Characterization,” John Wiley & Sons Ltd, 2006.
[33] N. Kakuda, T. Yoshida, and K. Yamaguchi, “Sb-mediated growth of high-density InAs quantum dots and GaAsSb embedding growth by MBE,” Appl. Surf. Sci., vol. 254, iss. 24, pp. 8050-8053, Oct. 2008.
[34] M. C. Debnath, T. D. Mishima, M. B. Santos, Y. Cheng, V. R. Whiteside, I. R. Sellers, K. Hossain, R. B. Laghumavarapu, B. L. Liang, and D. L. Huffaker, “High-density InAs/GaAs1−xSbx quantum-dot structures grown by molecular beam epitaxy for use in intermediate band solar cells,” J. Appl. Phys., vol. 119, iss. 11, Art. no. 114301, March 2016.
[37] I. Vurgaftman, J. R. Meyer, and L. R. Ram-Mohan, “Band parameters for III–V compound semiconductors and their alloys,” J. Appl. Phys., vol. 88, iss. 11, June 2001.
[38] T. I. Voronina, B. E. Zhurtanov, T. S. Lagunova, M. P. Mikhailova, K. D. Moiseev, A. E. Rozov, and Yu. P. Yakovlev, “Type II Heterojunctions in an InGaAsSb/GaSb System: Magnetotransport Properties,” Semiconductor, Vol. 35, No. 3, pp. 345-351, Jan. 2001.
[39] A. J. Williamson, A. Franceschetti, H. Fu, L. W. Wang, and Alex Zunger, “Indirect band gaps in quantum dots made from direct-gap bulk materials,”
J. Electron. Mater., Vol. 28, No. 5, Jan. 1999.