| 研究生: |
林家聿 Jia-Yu Lin |
|---|---|
| 論文名稱: |
台灣愛滋病實例研究-以聯合模型探討愛滋病患存活時間與相關生物指標之關係 An AIDS case study in Taiwan - Using joint model to explore the relationship between the survival time of AIDS patients and related biomarkers. |
| 指導教授: |
曾議寬
Yi-Kuan Tseng |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 統計研究所 Graduate Institute of Statistics |
| 論文出版年: | 2015 |
| 畢業學年度: | 104 |
| 語文別: | 中文 |
| 論文頁數: | 66 |
| 中文關鍵詞: | 聯合模型 、長期追蹤資料 、線性混合效應模型 、加速失敗時間風險模型 、EM 演算法 、拔靴法 |
| 外文關鍵詞: | join model, longitudinal data, linear mixed effects model, accelerated failure time model, EM algorithm, bootstrap method |
| 相關次數: | 點閱:11 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本篇論文利用CD4細胞數和病毒乘載量來預測愛滋病患的發病時間,並探討愛滋病患接受雞尾酒療法是否有療效。有重複測量的長期追蹤資料常常因為機器、人為測量誤差或生物體本身的差異,造成觀測上的誤差,因此本研究利用聯合模型來解決這樣的問題。在生物指標的部分,使用線性混合效應模型對長期追蹤資料軌跡做配適;在事件時間的部分,使用加速失敗時間風險模型描述共變數與存活時間的關係,再結合這兩個部分建構出聯合模型,並使用EM演算法對參數做估計,其中使用拔靴法來估算參數估計值的標準差。
關鍵字:聯合模型、長期追蹤資料、線性混合效應模型、加速失敗時間風險模型 、EM演算法、拔靴法。
In this thesis, we use CD4 and viral load to predict AIDS patients’ time to death and explore whether HAART works or not when patients were treated with it. The study which contains longitudinal covariates and survival time information is usually subject to measurement errors. Thus, we use joint model to solve this problem instead of partial likelihood approach. The approach uses linear mixed effects models to fit the longitudinal part and conducts the likelihood ratio test to select the suitable longitudinal model, and utilizes the accelerated failure time model to describe the relationship between covariates and survival time information. We combine these two parts to build a joint likelihood function and estimate the maximum likelihood estimators of all parameters by EM algorithm. The estimates of standard errors are derived by bootstrap method.
Keywords: join model, longitudinal data, linear mixed effects model, accelerated failure time model, EM algorithm, bootstrap method.
Brown, E. R., Ibrahim, J. G. & Degruttola, V. (2005). A Flexible B-spline Model for Multiple Longitudinal Biomakers and Survival. Biometrics, 61, 64-73.
Cox, D. R. (1972). Regression Models and Life-Tables. Journal of the Royal Statistical Society Series B, 34, 187-220.
Ding, J. & Wang, J. L. (2008). Modeling Longitudinal Data with Nonparametric Multiplicative Random Effects Jointly with Survival Data. Biometrics, 64, 546-56.
Rizopoulos, D. (2016). JM: An R package for the joint modelling of longitudinal and time-to-event data. Journal of Statistical Software 35 (9), 1-33.
Henderson, R., Diggle, P. and Dobson, A. (2000). Joint modeling of longitudinal measurements and event time data. Biometrics, 4, 465-480.
Hsieh, F., Tseng, Y. K. and Wang, J. L. (2006). Joint Modeling of Survival and Longitudinal Data: Likelihood Approch Revisited. Biometrics, 62, 1037-1043.
Kaplan, E L. and Meier, P. (1958). Nonparametric Estimation from Incomplete Observations. Journal of the American Statistical Assocoation, 53, 457-481.
Laird, N. M. and Ware, J. H. (1982). Random-effects models for longitudinal data. Biometrics, 38, 963-974.
Tsiatis, A. A. and Davidian, M. (2001). A semiparametric estimator for the prportioal hazards model with longitudinal covariates measured with error. Biometrica, 88, 447-458.
Tsiatis, A. A. and Davidian, M. (2004). Joint Modeling of Longitudinal and Time-to-Event Data: An Overview. Statistica Sinica, 14, 809-834.
Tseng, Y. K., Hsieh, F. and Wang, J. L. (2005). Joint Modelling of Accelerated Failure Time and Longitudinal Data. Biometrika, 92, pp.587-603.
Tseng, Y.K. and Yang. Y.F. “MATLAB Package for Longitudinal and Survival data with Cox and AFT Models.” Manuscript.
Verbeke, G. and Davidian, M (2008). Joint Models for Longitudinal Data: Introduction and Overview. Longitudinal data analysis: handbooks of modern statistical methods Ed. Fitzmaurice, G., Davidian, M., Verbeke, G. and Molenberghs, G., 319-326. Chapman&Hall/CRC.
Wulfsohn, M. S. and Tsiatis, A. A. (1997). A Joint Model for Survival and Longitudinal Data Measured with Error. Biometrics, 53, 330-339.
Hwang, Y.T., Wang, C.C., Wang, C.H., Tseng, Y.K. and Chang, Y.J. (2015). Joint model of multiple longitudinal measures and a binary outcome – an application to predict orthostatic hypertension for subacute stroke patients. Biometrical Journal. 57, 661-675.
Yu., M., Law N.J., Taylor J.M.G. & Sandler H.M. (2004). “Joint longitudinal-survival-cure models and their application to prostate cancer.” Statist. Sinica 14, 835-862
Zeng D., Cai J. (2005). Asymptotic Results for Maximum Likelihood Estimators in Joint Analysis of Repeated Measurements and Survival Time. The Annals of Statistics, 33, 2132-2163.
Zeng, D. and Lin, D. Y. (2007). Efficient Estimation in the Accelerated Failure Time Model. Journal of the American Statistical Association 102, 1387-1396.
行政院衛生署疾病管制局 出版 (2008)。 愛滋病檢驗及治療指引。
\hphantom{}
社團法人中華民國愛滋感染者權益促進會 網站 (2016)。http://www.praatw.org/aids.asp#1
吳天文 (2014)。台灣愛滋病實例研究- 以極限測定之線性混合模型探討病患之CD4數目與病毒載量對時間的關係。國立中央大學統計研究所碩士論文。
楊雅芳 (2013)。長期與存活資料之聯合模型-新方法和數值方法的改進。國立中央大學統計研究所博士論文。
翁金龍 (2012)。聯合模型之參數估計─軟體MATLAB套件JointModel與軟體R套件JM之比較。國立中央大學統計研究所碩士論文。
翁瑄佑 (2013)。台灣愛滋病實例研究- 以聯合模型探討CD4細胞數以及病毒乘載量對愛滋病患存活時間之關係。國立中央大學統計研究所碩士論文。