| 研究生: |
黃鈺軒 Yu-Hsuan Huang |
|---|---|
| 論文名稱: |
上行多天線非正交多重接取技術在 非完美通道訊息下之效能分析 Performance Analysis of Uplink MIMO-NOMA Systems in the Presence of Channel Estimation Error |
| 指導教授: | 陳永芳 |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
資訊電機學院 - 通訊工程學系 Department of Communication Engineering |
| 論文出版年: | 2018 |
| 畢業學年度: | 106 |
| 語文別: | 英文 |
| 論文頁數: | 41 |
| 中文關鍵詞: | 非正交多重接取技術 、多輸入多輸出系統 、上行傳輸 、通道估測誤差 |
| 相關次數: | 點閱:21 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
由於非正交多重接取系統(NOMA)日益重要,本論文針對該系統在不同環境下進行效能分析,而此系統為多輸入多輸出系統,其中,假設接收端的基地台則有N根天線,而傳送端的2N位使用者則各只有一根發射天線。本論文主要利用兩種不同的波束成形矩陣來分析在完美與非完美通道訊息估測下的性能,分別為強制歸零波束技術(ZF)和最小均方誤差波束技術(MMSE)。本論文將先計算不同環境下訊號與干擾加雜訊比(SINR),接著再探討其效能。其中,完美的連續干擾消除(SIC)可實現在完美通道狀態訊息(CSI)的情況下,但若存在通道估測誤差則無法實現。而效能的探討將會以模擬圖進行比較,比較結果顯示,在上行NOMA系統中MMSE波束技術相對於ZF波束技術,在不完美的通道狀態資訊情況下可以提供較好的系統容量(Capacity)和錯誤率(BER)。
This paper analyzes the performance of Non-orthogonal multiple access (NOMA) in the presence of channel estimation error for an uplink Multiple Input Multiple Output (MIMO) system with N antennas at base station (BS) and one transmit antenna per 2N users. We investigate the performance of perfect and imperfect channel estimation by utilizing two different beamforming weight matrices methods, which are zero-forcing (ZF) and minimum mean square error (MMSE). In each situation, the calculation of capacity is derived from the signal to interference plus noise ratio (SINR), and then we examine the performance through those data. Furthermore, the perfect successive interference cancellation (SIC) can be utilized when the channel state information (CSI) is perfect, but it cannot be achieved in the presence of channel estimation error. By comparing the performance of simulation results, we notice that without perfect CSI, the MMSE beamforming is a better choice in the uplink NOMA system since MMSE offers better sum capacity and bit error rate.
[1] S. Vashi, J. Ram, J. Modi, S. Verma and C. Prakash, “Internet of Things (IoT): A vision, architectural elements, and security issues,” 2017 International Conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud) (I-SMAC), Palladam, pp. 492-496, 2017.
[2] F. Rusek et al., “Scaling Up MIMO: Opportunities and Challenges with Very Large Arrays,” IEEE Signal Processing Magazine, vol. 30, no. 1, pp. 40-60, Jan. 2013.
[3] E. G. Larsson, O. Edfors, F. Tufvesson and T. L. Marzetta, “Massive MIMO for next generation wireless systems,” IEEE Communications Magazine, vol. 52, no. 2, pp. 186-195, Fe. 2014.
[4] A. Goldsmith, S. A. Jafar, N. Jindal and S. Vishwanath, “Capacity limits of MIMO channels,” IEEE Journal on Selected Areas in Communications, vol. 21, no. 5, pp. 684-702, Jun. 2003.
[5] Z. Ding et al., “Application of Non-Orthogonal Multiple Access in LTE and 5G Networks,” IEEE Communications Magazine, vol. 55, no. 2, pp. 185-191, Feb. 2017.
[6] Y. Liu, G. Pan, H. Zhang and M. Song, “On the Capacity Comparison Between MIMO-NOMA and MIMO-OMA,” IEEE Access, vol. 4, pp. 2123-2129, 2016.
[7] K. Jiang, T. Jing, Y. Huo, F. Zhang and Z. Li, “SIC-Based Secrecy Performance in Uplink NOMA Multi-Eavesdropper Wiretap Channels,” IEEE Access, vol. 6, pp. 19664-19680, 2018.
[8] T. K. Lyu, “Capacity of multi-user MIMO systems with MMSE and ZF precoding,” 2016 IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS), San Francisco, CA, pp. 1083-1084, 2016.
[9] Z. Ding, F. Adachi and H. V. Poor, “The Application of MIMO to Non-Orthogonal Multiple Access,” IEEE Transactions on Wireless Communications, vol. 15, no. 1, pp. 537-552, Jan. 2016.
[10] Z. Ding, R. Schober and H. V. Poor, “On the design of MIMO-NOMA downlink and uplink transmission,” 2016 IEEE International Conference on Communications (ICC), Kuala Lumpur, pp. 1-6, 2016.
[11] C. j. Chen and L. c. Wang, “Performance Analysis of Scheduling in Multiuser MIMO Systems with Zero-Forcing Receivers,” IEEE Journal on Selected Areas in Communications, vol. 25, no. 7, pp. 1435-1445, Sep. 2007.
[12] B. Kimy et al., “Non-orthogonal Multiple Access in a Downlink Multiuser Beamforming System,” MILCOM 2013 - 2013 IEEE Military Communications Conference, San Diego, CA, pp. 1278-1283, 2013.
[13] B. Kim et al., “Uplink NOMA with Multi-Antenna,” 2015 IEEE 81st Vehicular Technology Conference (VTC Spring), Glasgow, pp. 1-5, 2015.
[14] S. Liu, C. Zhang and G. Lyu, “User selection and power schedule for downlink non-orthogonal multiple access (NOMA) system,” 2015 IEEE International Conference on Communication Workshop (ICCW), London, pp. 2561-2565, 2015.
[15] Y. Lan, A. Benjebboiu, X. Chen, A. Li and H. Jiang, “Considerations on downlink non-orthogonal multiple access (NOMA) combined with closed-loop SU-MIMO,” 2014 8th International Conference on Signal Processing and Communication Systems (ICSPCS), Gold Coast, QLD, pp. 1-5, 2014.
[16] Y. Endo, Y. Kishiyama and K. Higuchi, “Uplink non-orthogonal access with MMSE-SIC in the presence of inter-cell interference,” 2012 International Symposium on Wireless Communication Systems (ISWCS), Paris, pp. 261-265, 2012.
[17] W. Liu, L. L. Yang and L. Hanzo, “SVD-Assisted Multiuser Transmitter and Multiuser Detector Design for MIMO Systems,” IEEE Transactions on Vehicular Technology, vol. 58, no. 2, pp. 1016-1021, Feb. 2009.
[18] T. Takeda and K. Higuchi, “Enhanced User Fairness Using Non-Orthogonal Access with SIC in Cellular Uplink,” 2011 IEEE Vehicular Technology Conference (VTC Fall), San Francisco, CA, pp. 1-5, 2011.
[19] D. Tse, P. Viswanath, “Fundamentals of Wireless Communication,” Cambridge University Press, 2005.
[20] P. Viswanath and D. N. C. Tse, “Sum capacity of the vector Gaussian broadcast channel and uplink-downlink duality,” IEEE Transactions on Information Theory, vol. 49, no. 8, pp. 1912-1921, Aug. 2003.
[21] C. Wang, E. K. S. Au, R. D. Murch, W. H. Mow, R. S. Cheng and V. Lau, “On the Performance of the MIMO Zero-Forcing Receiver in the Presence of Channel Estimation Error,” IEEE Transactions on Wireless Communications, vol. 6, no. 3, pp. 805-810, Mar. 2007.
[22] E. Eraslan, B. Daneshrad and C. Y. Lou, “Performance Indicator for MIMO MMSE Receivers in the Presence of Channel Estimation Error,” IEEE Wireless Communications Letters, vol. 2, no. 2, pp. 211-214, Apr. 2013.
[23] “E-UTRA Physical layer procedures,” 3GPP, TS 36.213 V8.1.0.