| 研究生: |
黃淳瑩 Chun-Ying Huang |
|---|---|
| 論文名稱: |
血清素受體2B基因在酸敏感受體3基因剔除小鼠的背根神經節中表現量增加 Enhanced transcription of serotonin receptor 2B in dorsal root ganglion from ASIC3 knockout mice |
| 指導教授: |
孫維欣
Wei-hsin Sun |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
生醫理工學院 - 生命科學系 Department of Life Science |
| 畢業學年度: | 94 |
| 語文別: | 中文 |
| 論文頁數: | 75 |
| 中文關鍵詞: | 背根神經節 、基因剔除小鼠 、啟動子 、酸敏感受體3 、血清素 、血清素受體2B 、直徑較小神經元 、痛覺 |
| 外文關鍵詞: | nociception, dorsal root ganglion, DRG, knockout mice, promoter, ASIC3, 5-HT2B, serotonin receptor 2B, serotonin, peripherin positive cells, small diameter cells, pain |
| 相關次數: | 點閱:13 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在組織受到傷害或者發生發炎反應時,通常會造成疼痛感覺,同時組織四周圍會有組織酸化的現象,組織酸化被認為是造成疼痛的主要原因。在已知可接受酸刺激的受體中,酸敏感受體3被認為是最主要負責接受酸而引發疼痛的受體,然而令人驚訝的是,酸敏感受體3基因剔除小鼠對於一些中高強度刺激所引起的疼痛更敏感,這似乎代表了有另外一些分子彌補了酸敏感受體3的缺失,使得基因剔除小鼠對高強度有害刺激變得更敏感。在實驗室先前的G蛋白偶合受體微陣列分析中,我們發現血清素受體2B是所有血清素受體中唯一表現量上升的基因。然而血清素受體2B在痛覺上的功能及它和酸敏感受體3基因之間的相互作用仍然未知,本篇論文主要的目的是想了解血清素受體2B和酸敏感受體3之間的相互作用。首先,我先確認微陣列分析的結果是否正確,即血清素受體2B是否在酸敏感受體3基因剔除小鼠的背根神經節中,有表現量上升的情形,此外我也要觀察受體2B在背根神經節中的分佈情形。實驗結果發現血清素受體2B表現在所有的組織中,並且在酸敏感3基因剔除小鼠的背根神經節中表現量增加2倍。利用原位雜合反應實驗,我發現血清素受體2B主要分佈在背根神經節中直徑較小的神經元中,而這些直徑較小神經纖維主要負責痛覺訊息傳遞,血清素受體2B不但表現在酸敏感受體3基因剔除小鼠的背根神經節中直徑較小的神經元,且分佈細胞數目有增加的情形,這些結果顯示血清素受體2B可能與痛覺訊息傳遞或調控有關。因為血清素可以增加酸敏感受體3的基因表現,同時在酸敏感受體3基因剔除後血清素受體2B表現量增加,所以我們推測血清素可能藉著受體2B而使酸敏感受體3基因表現增加。為了驗證這個假設,我利用聚合酶鏈反應擴增小鼠的酸敏感受體3啟動子的基因,將此基因選殖入載體用以進行啟動子活性分析。結果發現即使細胞中轉染的血清素受體2B具有活性,血清素亦不能增加酸敏感受體3啟動子的活性。但是,這並不代表在真正生物體中,血清素不能藉由血清素受體2B去影響酸敏感受體3的基因表現,其可能原因我們將於此論文中討論。
Tissue acidosis, an important feature of tissue injury or inflammation, is a dominant factor causing pain. Among those acid sensing receptors, acid sensing ion channel 3 (ASIC3) is believed to be the major receptor responsible for acid-induced pain. Surprisingly, ASIC3-deficient mice have displayed a higher sensitivity in pain sensation than wild-type mice. It is likely that other molecules compensate ASIC3-deficiency. Using microarray analysis, previous studies have found that the transcripts of serotonin receptor 2B (5-HT2B) are up-regulated in ASIC3 knockout mice. However, the role of 5-HT2B in pain sensation and its relationship with ASIC3 remain unclear. The objective of this thesis is to explore the function of 5-HT2B in pain and to understand the relationship between 5-HT2B and ASIC3. To achieve this aim, I first confirmed the results of microarray and examined 5-HT2B distribuction. 5-HT2B is expressed in all tested tissues from wild-type and ASIC3 knockout mice. The expression is enhanced two folds in dorsal root ganglion (DRG) from ASIC3 knockout mice. Using in situ hybridization, I have found that the majority of 5-HT2B is expressed in a subset of pain-relevant, small-diameter neurons, and this population increases in ASIC3 knockout DRG. Since serotonin increases ASIC3 transcripts and 5-HT2B transcription is enhanced in a loss of ASIC3 gene, it is possible that serotonin enhances ASIC3 transcription through 5-HT2B. To test this hypothesis, I have cloned ASIC3 promoter to examine the promoter activity in the presence of 5-HT2B. After serotonin stimulation, ASIC3 promoter activity is not enhanced, even though 5-HT2B is activated. The possible reasons will be discussed in the thesis.
Ballou, L. R., Botting, R. M., Goorha, S., Zhang, J., Vane, J. R. (2000). Nociception in cyclooxygenase isozyme-denficient mice. Proc Natl Acad Sci U S A. 97, 10272-10276.
Basbaum, A.I.and Woolf, C.J. (1999). Pain. Curr. Biol. 9, 429-431.
Barnes, N.M. and Sharp, T. (1999). A review of central 5-HT receptors and their function. Neuropharmacology. 38,1083-1152.
Bevan S. and Yeats J. (1991). Protons activate a cation conductance in a sub-population of rat dorsal root ganglion neurons. J Physiol (Lond) 433,145-161.
Caterina, M.J., Schumacher, M.A., Tominaga, M., Rosen, T.A., Levine, J.D. and Julius, D. (1997). The capsaicin receptor: a heat-activated ion channel in the pain pathway. Nature 389, 816-824.
Caterina, M.J., Leffler, A., Malmberg, A.B., Martin, W.F., Trafton, J.A., Petersen-Zeitz,
K, R., Koltzenburg, M., Basbaum, A.I. and Julius, D. (2000). Impaired nociception and pain sensation in mice lacking the capsaicin receptor. Science 288,306-313.
Chen, C.C., Zimmer, A., Sun, W.H., Hall, J., Brownstein, M.J. and Zimmer, A. (2002). A role of ASIC3 in the modulation of high-intensity pain stimuli. Proc Natl Acad Sci U S A. 99, 8992-8997.
Choi, D.S., Ward, S.J., Messaddeq, N., Launay, J. M. and Maroteaux, L.(1997). 5-HT2B receptor-mediated serotonin morphogenetic functions in mouse cranial neural crest and myocardiac cells. Development124, 1745-1755.
Costigan, M. and Woolf, C.J. (2000). Pain: molecular mechanisms. J. pain 1, 35-44.
de Weille, J. , Bassilana, F., Lazdunski, M. and Waldmann, R. (1998). Identification, functional expression and chromosomal localisation of a sustained human proton-gated cation channel. FEBS Lett.21,257-60.
Fiorica-Howells, E., Maroteaux, L. and Gershon, M.D. (2000). Serotonin and the 5-HT(2B) receptor in the development of enteric neurons. J Neurosci. 20,294-305.
Fonseca, M.I., Ni, Y.G., Dunning, D.D. and Miledi, R. (2001). Distribution of serotonin 2A, 2C and 3 receptor mRNA in spinal cord and medulla oblongata. Brain Res Mol Brain Res. 18,11-19.
García-Añoveros, J., Samad, T.A., Zuvela-Jelaska, L., Woolf, C.J. and Corey, D.P. (2001). Transport and Localization of the DEG/ENaC Ion Channel BnaC1α to Peripheral Mechanosensory Terminals of Dorsal Root Ganglia Neurons. J Neurosci. 21,2678-2686.
Hunt, S.P. and Mantyh, P.W., (2001). The molecular dynamics of pain control. Nature reviews 2, 83-90.
Issberner, U., Reeh, P.W., and Steen, K.H. (1996). Pain due to tissue acidosis: a mechanism for inflammatory and ischemic myalgia? Neurosci Lett 208,191–194.
Jacobus, W.E., Taylor, G.J., Hollis, D.P., and Nunnally, R.L. (1997). Phosphorus nuclear magnetic resonance of perfused working rat heart. Nature 265,756-758.
Julius, D. and Basbaum, A.I. (2001). Molecular mechanism of nociception. Nature 413, 203-210.
Kandel, E.R., Schwartz, J.H. and Jessell, T.M.(2000)Principles of neural science. 4th edition. Chapter 24.
Kjorsvik A., Tjolsen, A. and Hole K. (2001). Activation of spinal serotonin 2A/2C receptors augments nociceptive responses in the rat. Brain Res. 910, 179-181.
Krishtal, O.A. (2003). The ASICs: Signaling molecules?Modulators? Trends Neurosci.126,477-483.
Krishtal, O.A. and Pidoplichko, V.I. (1981). Receptor for protons in the membrane of sensory neurons. Brain Res 214, 150-154.
Liu, X.Y., Wu, S.X., Wang, Y.Y., Wang, W., Zhou, L. and Li, Y.Q. (2005). Neurosci. Lett. 375, 42-46.
Loric, S., Launay J.M., Colas, J.F. and Maroteaux, L.(1992). New mouse 5-HT-like receptor. FEBS 312, 203-207.
Lingueglia, E., de Weile, J.R., Bassilana, F., Heurteaux, C., Sakai, H., Waldmann, R. and Lazdunski, M. (1997). A modulatory subunit of acid sensing ion channels in brain and dorsal root ganglion cells. J Biol Chem 272,19778-29783.
Mamet, J., Baron, A., Lazdunski, M. and Voilley, N. (2002). Proinflammatory mediators, stimulators of sensory neuron excitability via the expression of asic-sensing ion channels. J. Neurosci. 22, 10662-10670.
Mamet, J., Lazdunski, M. and Voilley, N. (2003). How nerve growth factor drives physiological and inflammatory expressions of acid-sensing ion channel 3 in sensory neurons. J. Biol. Chem. 278, 48907-48913.
Nebigil, C.G., Schaerlinger, B., Hickel, P., Launay, J.M. and Maroteaux, L. (2001). Developmentally regulated serotonin 5-HT2B receptor. Int. J. Devl. Neurosci.19, 365-372.
Nicholson, R., Small, J., Dixon, A.K., Spanswick, D. and Lee, K.(2003). Serotonin receptor mRNA expression in rat dorsal root ganglion neurons. Neurosci. Lett. 337, 119-122.
Price, M.P., Mcllwrath, S.L., Xie, J., Cheng, C., Qiao, J., Tarr, D.E., Sluka, K.A., Brennan, T.J., Lewin, G.R. and Welsh, M.J. (2001). The DRASIC cation channel contributes to the betection of cutaneous touch and acid ctimuli in mice. Neuron 32, 1071-1083.
Reeh, P.W. and Steen, K.H. (1996). Tissue acidosis in nociception and pain. Prog Brain Res. 113,143-51.
Sarnyai, Z., Sibille, E.L., Pavlides, C., Fenster, R.J., McEwen, B.S. and Tóth, M. (2000). Impaired hippocampal-dependent learning and functional abnormalities in the hippocampus in mice lacking serotonin(1A) receptors. Proc Natl Acad Sci U S A. 97,14731-14736.
Scholz, J. and Woolf, C.J. (2002). Can we conquer pain? Nature 5, 1062-1067.
Serafeim, A., Grafton, G., Chamba, A., Gregory, C.D., Blakely, R.D., Bowery, N.G., Barnes, N.M. and Gordon J. (2002). 5-Hydroxytryptamine drives apoptosis in biopsylike Burkitt lymphoma cells: reversal by selective serotonin reuptake inhibitors. Blood. 99,2545-53.
Steen, K.H., Reeh, P.W. (1993). Sustained graded pain and hyperalgesia from harmless experimental tissue acidosis in human skin. Neurosci Lett 154,113–116.
Steen, K.H., Issberner, U., Reeh, P.W. (1995a). Pain due to experimental acidosis in human skin: evidence for non- adapting nociceptor excitation. Neurosci Lett 199,29–32.
Steen, K.H., Steen, A.E., Kreysel, H.W. and Reeh, P.W. (1996). Infalmmatory meduators potentiate pain induced by experimental tissue acidosis. Pain 66, 163-170.
Steen, K.H., Steen, A.E. and Reeh, P.W. (1995b). A domainant role of acid pH in inflammatory excitation and sensitization of nociceptors in rat skin, in vivo. Neurosci Lett 15, 3982-3989.
Sutherland, S.P., Benson, C.J., Adelman, J.P. and McCleskey, E. W. (2001). Acid-sensing ion channel 3 matches the acid-gated current in cardiac ischemia-sensing neurons. Proc Natl Acad Sci U S A. 98, 711-716.
Suzuki, R., Rygh L.J. and Dickenson A.H. (2004). Bad news from the brain: descending 5-HT pathway that control spinal pain processing. Trends Pharmacol. Sci. 25, 613-617.
Tominaga M. and Julius D. (2000). Capsaicin receptor in the pain pathway. Jpn. J. Pharmacol. 83, 20-24.
Ugawa, S., Ueda, T., Ishida, Y., Nishigaki, M., Shibata, Y. and Shimada, S. (2002). Amiloride-blockable acid-sensing ion channels are leading acid sensors expressed in human nociceptors. J Clin Invest. 110,1185-1190.
Voilley, N., de Weille, J., Mamet, J. and Lazdunski, M. (2001). Nonsteroid anti- inflammatory drugs inhibit both the activity and the inflammation-induced expression of acid-sensing ion channels in nociceptors. J. Neurosci. 21, 8026-8033.
Waldmann, R., Bassilana, F., de Weille, J., Champigny, G., Heurteaux, C. and Lazdunski, M. (1997a) Molecular cloning of a non-inactivatiog proton-gated Na+ channel specific for sensory neurons. J Biol Chem 272,20975-20978.
Waldmann, R., Champigeny, G., Bassilana, F., Heurteaux, C. and Lazdunski, M. (1997b). A proton-gated cation channel involved in acid-sensing. Nature. 386, 173-177.
Waldmann, R., Champigeny, G., Lingueglia, E., de Weille, J.R., Heurteaux, C. and Lazdunski, M. (1999). H(+)-gated cation channels. Ann.N.Y.Acad.Sci 868,67-76.
Waldmann, R., Champigeny, G., Voilley, N., Lauritzen, I. and Lazdunski, M. (1996). The mammalian degenerin MDEG, an amiloride-sensitive cation channel activated by mutations causing neurodegeneration in Caenorhabditis elegans. J Biol Chem. 271, 10433-10436.
Waldmann, R. and Lazdunski, M. (1998). H(+)-gated cation channels: neuronal acid sensors in the NaC/DEG family of ion channels. Curr Opin Neurobiol 8,418-424.
Wu, S.X., Zhu, M., Wang, W., Wang, Y.Y., Li, Y.Q. and Yew, D.T. (2001). Changes of the expression of 5-HT receptor subtype mRNA in Rat dorsal root gangion by complete Freund’s adjuvant-induced inflammation. Neurosci. Lett. 307. 183-186.
Zeitz, K.P., Guy, N., Malmberg, A.B., Dirajlal, S., Martin, W.J., Sun, L., Bonhaus, D.W., Stucky, C.L., Julius, D. and Basbaum, A.I. (2002). The 5-HT3 subtype of serotonin receptor contributes to nociceptive processing via a novel subset of myelinated and unmyelinated nociceptors. J Neurosci. 22,1010-1019.