跳到主要內容

簡易檢索 / 詳目顯示

研究生: 丁挺洲
Ting-Jou Ding
論文名稱: 以EWOD為基礎的長鏈高分子原位合成器
指導教授: 楊宗勳
Tsung-Hsun Yang
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程學系
Department of Optics and Photonics
畢業學年度: 93
語文別: 中文
論文頁數: 93
中文關鍵詞: 胜肽合成胺基酸介電質電濕式
外文關鍵詞: peptide synthesis, Amino Acid, EWOD
相關次數: 點閱:10下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文探討二維介電質電濕式(electrowetting on dielectric, EWOD)微流體系統的設計與製作,並利用此微流體系統來做胜肽合成(Peptide Synthesis)反應的應用。利用立體結構將表面控制電極與底層的外接電路隔開,可以有效解決介電質電濕式微流體元件在增加控制電極數目成為二維陣列時,內部控制電極無法布線的問題。使用立體結構的方法製作的二維EWOD元件,在大氣環境下的操作電壓約為30伏特。其次,利用self-assembly monolayer(SAM) FTS分子鍵結的成膜方式來取代傳統使用Teflon spin-coating 方式來製作的疏水層。以此方法製作的疏水層可以防止疏水層在物理碰觸或外加高電壓時產生疏水膜破裂的現象。因此可使微流體元件更加穩固、容易清洗、耐用、亦可重複使用。
    另外,利用介電質電濕式微流體元件進行胜肽合成(Peptide synthesis)反應,分別以Wang resin 和Au@Fe奈米粒子作為固體基材,分別進行兩種胺基酸的接合反應,並研究胺基酸接合情形。藉此提出以EWOD為基礎的長鏈高分子原位合成器。


    論文摘要 i 目錄 ii 圖索引 iv 表索引 viii 第一章 導論 1 第二章 微流體的驅動 11 2.1 微流體驅動的原理 11 2.2 表面張力 12 2.3 使用表面張力的微驅動器 15 2.3.1 電毛細管作用 15 2.3.2 Continuous Electrowetting 16 2.3.3 Electrowetting 18 2.3.4 Electrowetting on Dielectric(EWOD) 20 2.4 微流體的裝置 22 第三章 設計與製造 23 3.1 EWOD 元件 23 3.2 Self-assembly monolayer 25 3.3 以EWOD 為基礎的微流體系統設計 28 3.4 總結 42 第四章 測試 43 4.1 實驗裝置 43 4.2 SAM(FTS)接觸角的量測 46 4.3 表面FTS 物理吸附之測試 51 4.4 SAM(FTS)成長時間之測試 53 4.5 二維系統操控測試 56 4.6 總結 63 第五章 應用 64 5.1 胜肽合成 65 5.2 胜肽合成實驗流程 70 5.3 胜肽合成實驗測試 78 第六章 結論 87 參考資料 89

    [1].Celera Genomics, history, http://www.celera.com/celera/history.
    [2].Manz, A., Graber, N., Widmer, H. M., “miniaturized total Chemical Analysis System: A Novel Concept for Chemical Sensing, ” Sensors and Actuators, B1, 1990.
    [3].K. K. Jain,“Biochips for Gene Spotting, ” Science, Vol 294, Issue 5542, 621-623 , 19 October 2001.
    [4].Affymetrix, Gene-chip Technology, http://www.affymetrix.com/technology/index.aff.
    [5].Nano Bioelectronics & Systems Research Center , http://nanobio.snu.ac.kr/eng/research_3.html#2.
    [6].David R. Walt,“ MOLECULAR BIOLOGY: Bead-based Fiber-Optic Arrays,” Science, Vol.287, Page 451-452, 2000.
    [7].Duggan, David J; Bittner, Michael; Chen, Yidong; Meltzer, Paul; Trent, Jeffrey M., Nature Genetics, “Expression profiling using cDNA microarrays,” Nature Genetics, Vol. 21 Issue 1, p10-p14, Jan 1999 Supplement.
    [8].Paras N. Prasad, Introduction to biophotonics. New Jersey: Wiley Interscience,Ch.10, 2003.
    [9].M. Madou, Fundamentals of Microfabrication. Boca Raton, FL: CRC, Ch.9, 1997.
    [10].G. T. A. Kovacs, Micromachined Transducers Sourcebook. New York: McGraw -Hill, Ch. 9, 1998.
    [11].C.-M Ho, “Fluidics-the link between micro and nano sciences and technologies-,” in Proc. IEEE Int. Conf. MEMS, Interlaken, Switzerland, pp. 375–384, 2001.
    [12].S.K. Cho, H. Moon, and C.J. Kim, “Creating, transporting, cutting, and merging liquid droplets by electrowetting-based actuation for digital microfluidic circuits,” Microelectromechanical Systems, Journal of , Vol. 12 , No. 1 , pp. 70-80, 2003.
    [13].S. Shoji, “Microsystem Technology in Chemistry and Life Science,” H. Becker, A. Manz, Eds., Vol. 194, pp. 164-188, 1998
    [14].J. Lee, H. Moon, J. Fowler, T. Schoellhammer, and C.J. Kim, “Electrowetting and electrowetting-on-dielectric for microscale liquid handling,” Sens. Actuators, Phys. A, Vol. 95, pp. 259–268, 2002.
    [15].P.C. Hiemenz, Principles of Colloid and Surface Chemistry, Marcel Dekker, New York, Ch. 6 and 12, 1986.
    [16].T. K. Jun and C.-J. Kim, “Valveless pumping using traversing vapor bubbles in microchannels,” J. Appl. Phys., Vol. 83, No. 11, pp. 5658–5664, 1998.
    [17].T. A. Sammarco and M. A. Burns, “Thermocapillary pumping of discrete drops in microfabricated analysis devices,” AIChE J., Vol. 45, No. 2, pp. 350–366, 1999.
    [18].H. Matsumoto and J. E. Colgate, “Preliminary investigation of micropumping based on electrical control of interfacial tension,” in Proc. IEEE MEMS Workshop, Napa Valley, CA, pp. 105-110, 1990.
    [19].B. Berge, “Electrocapillarity and wetting of insulator films by water,” Comptes Rendus de l’Academie des Sciences Serie II, Vol. 317, pp.157–163, 1993.
    [20].M. W. J. Prins, W. J. J. Welters, and J. W. Weekamp, “Fluid control in multichannel structures by electrocapillary pressure,” Science, Vol. 291, pp. 277–280, 2001.
    [21].B. Berge, C. R. Acad. Sci. Ser. II, 317, 157, 1993.
    [22].G. Beni, and M. A. Tenan, “Dynamics of electrowetting displays,” J. Appl. Phys., Vol. 52, pp. 6011-6015, 1981.
    [23].J. L. Jackel, S. Hackwood, J. J. Veselka, and G. Beni, “Electrowetting switch for multimode optical fibers,” Appl. Opt. Vol. 22, pp.1765-1770, 1983.
    [24].G. Beni, and S. Hackwood, “Electro-wetting displays,” Appl. Phys. Lett. Vol. 38, pp. 207-209, 1981.
    [25].J. L. Jackel, S. Hackwood, and G. Beni, “Electrowetting optical switch,” Appl. Phys. Lett., Vol. 40, pp.4-5, 1982.
    [26].M. Vallet, M. Vallade, and B. Berge, “Limiting phenomena for the spreading of water on polymer films by electrowetting,” Eur. Phys. J. B 11, pp. 583-591, 1999.
    [27].J. Lee, and C.J. Kim, “Surface-Tension-Driven Microactuation Based on Continuous Electrowetting,” J. Microelectromech. Syst., Vol. 9, No. 2, pp. 171-180, 2000.
    [28].T.A. Mcmahon, and J.T. Bonner, On Size and Life, Scientific American Books, New York (1983).
    [29].J. Lee, Dissertation “Microactuation by Continuous Electrowetting and Electrowetting: Theory, Fabrication and Demonstration”, UCLA, 2000.
    [30].P.C. Hiemenz, Principles of Colloid and Surface Chemistry, Marcel Dekker, New York, Ch. 6&12, 1986.
    [31].G. Beni, S. Hackwood, and J.L. Jackel, “Continuous Electrowetting Effect,” Appl. Phys. Lett., Vol. 40, No. 10, pp. 912-914, 1982.
    [32].J. O. M. Bockris, and A. K. N. Reddy, Modern electrochemistry, Plenum Press, New York, Ch. 7 and 8, 1970.
    [33].N.K. Adam, The Physics and Chemistry of Surfaces, Oxford University Press, London, Ch. 1, 8, 9, 1941.
    [34].M. G. Lippmann, “Relations entre les phénomènes electriques et capillaires,” Ann. Chim. Phys., Vol. 5, No. 11, pp. 494–549, 1875
    [35].Philips,http://www.research.philips.com/newscenter/archive/2004/fluidlenses.html.
    [36].Stein Kuiper, Benno Hendriks, “Liquid Lenses Provide Quality Images for Camera Phones,” SPIE’s oemagazine, January, 2005
    [37].Shin-Chyn Lin, Ting Jou Ding, and Tsung-Hsun Yang, Improved Fabrication Process for EWOD-based Digital Microfluidic System,第八屆奈米工程計為系統技術研討會,mmc2004,2a-5.
    [38].Lucy Netzer, and Jacob Sagiv, “A New Approach to Construction of Artifical Monolayer Assemblies,” J. Am. Chem. Soc., Vol. 105, No 3, pp.674-676, 1983 .
    [39].Abraham Ulman, “Formation and Structure of Self-assembled Monolayers,” Chem. Rev., Vol. 96, 1533-1554, 1996.
    [40].Kazufumi OGAWA, Mamoru SOGA, Yusuke TAKADA, and Ichiro NAKAYAMA, “Development of a Transparent and Ultraphydrophobic Glass Plate,” Jpn. J. Appl. Phys., Vol. 32 pp. L614-L615, 1993.
    [41].Jacob Sagiv, “Organized Monolayers by Adsorption. 1. Formation and Structure of Oleophobic Mixed Monolayers on Solid Surfaces,” J. Am. Chem. Soc., Vol. 102, No 1, pp.92-98, 1980.
    [42].Kazufumi Ogawa, Norihisa Mino, Hideharu Tamura, and Motoyoshi Hatada, “Polymerization of a Chemically Adsorbed Monolayer of an Acetylene Derivative,” Langmuir, Vol. 6 pp. 1807-1809, 1990
    [43].Shin-Chyn Lin, Study of EWOD-based Actuation for Digital Microfluid System,M.S. Thesis, 2004.
    [44].王自豪, 林誠謙, 李弘謙, “談蛋白質折疊與氨基酸序列,” 物理雙月刊, Vol. 24, pp. 320-324,2002.
    [45].Advanced ChemTech, “hand book of Combinatorial, Organic & Peptide Chemistry,” pp.46, 2003-2004.
    [46].Chan, Weng C., White, Peter D., “Fmoc Solid Phase Peptide Synthesis: A Practical Approach,” New York Oxford University (UK), Chapter 2, 2000.
    [47].John Morrow Stewart, Janis Dillaha Young, R.B. Merrifield “Solid Phase Peptide Synthesis ,” Pierce Chemical Company, 1984
    [48].Freifelder David, “分子生物學,” 藝軒, 1997.
    [49].Bodanszky, Miklos, “Peptide chemistry a pactical textbook,” berlin Spinger-Verlag, 1988.
    [50].Sewald Norbert, “Peptides:Chemistry and Biology,” Wiley, 2002
    [51].Taiwan Advanced Nanotech Inc., “TANBead USPIO奈米磁珠於生醫領域之應用,”.
    [52].Min Chen, Saeki Yamamuro, Dorothy Ferrell, and Sara A. Majetich, “Gold-coated iron nanoparticle for biomedical applications,” J. App. Phys., Vol. 93, number 10, pp.7551-7553, 2003.
    [53].Jun Lin, Weilie Zhou, A. Kumbhar, J. Weimann, Jiye Fang, E. E. Carpenter, and C. J.O’Connor, “Gold-Coated Iron (Fe@Au) Nanoparticles: Synthesis, Characterization, and Magnetic Field-Induced Self-assembly,” Journal of Solid State Chemistry, Vol. 259, pp. 26-31, 2001.

    QR CODE
    :::