| 研究生: |
李佩玲 Pei-Ling Lee |
|---|---|
| 論文名稱: |
四丁基銨鹽水溶液之電導,離子締合及成分活性係數研究 Conductance, Association and Component Activity Coefficients of Aqueous Solutions of Tetrabutylammonium Salts. |
| 指導教授: |
王天財
Ten-Tsai Wang |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程與材料工程學系 Department of Chemical & Materials Engineering |
| 畢業學年度: | 92 |
| 語文別: | 中文 |
| 論文頁數: | 96 |
| 中文關鍵詞: | 電導 、四丁基銨鹽 、活性係數 、離子締合 |
| 外文關鍵詞: | Activity Coefficients, Association, Conductance |
| 相關次數: | 點閱:12 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
摘 要
本實驗研究以導電度法併用蒸氣壓量度法求得離子活性係數γ±。研究系統主要為四丁基銨鹽(QY,Q=Bu4N+、Y=Br-、Cl-、HSO4-、I-)。本研究先探討導電度κ、當量導電度Λ、締合常數KA、締合度θ、蒸氣壓P,活性係數γw、、γIP、γ±與濃度之關係。(A)導電度κ、締合常數(1)四丁基銨鹽水溶液導電度會先隨著濃度增加而增加,到某一濃度時導電度會突然下降,此時可能形成Ion Pair離子;(2)系統中QHSO4為一較高導電度,QI對水之溶解度較小,故只能做到低濃度。(3)導電度κ越大,KA、Λ˚也越大。(4)四丁基銨鹽之陰離子半徑越大則締合常數KA越小 , Å) > Å) > Å) > Å),故於水中 。(B)締合度θ(1)系統濃度越小,θ值亦越小;離子數越少相對的締合度就越小。(2)由κ對(1-θ)C圖,得θ與自由離子呈線性關係,若不合理並不會呈現線性圖;所以用導電度κ來求締合度θ是可靠性的。(C)蒸氣壓(1)季銨鹽的加入會使得蒸氣壓的量度下降,濃度越小,蒸氣壓的變化會趨近於水蒸氣壓。(D)活性係數(1)使用Debye-Hückel limiting求得之活性係數在高濃度時會有較大的誤差,濃度<10-3M用導電度方程式求得較準確,濃度越大時,γw、γIP會越小。γ±對濃度圖會形成一曲線;當濃度越小,γ±會趨近於1:若不然且大於1,極有可能形成自由離子。
The study use the way of conductance and vapor pressure to meansure the activity of ion pair.
The system we study are Tetrabutylammonium Salts(QY,Q=Bu4N+、Y=Br-、Cl-、HSO4-、I-).We will get the conductivity, molar conductivity,association constant,association fraction,vapor pressure,activity Coefficients and can study the relation between them and concentration.
參考文獻
[1]Barthel J ., G. Lauermannand R. Neueder , “Vapor Pressure Measurements on Non-Aqueous Electrolyte Solution . Part2 . Tetraalkylammonium Salts in Methanol.Activity Coefficients of Varous 1-1 Electrolytes at High Concentrations”,J. Soln. Chem.15 (1986) ,pp851-867
[2]Barthel J. and W. Kunz,“Vapor Pressure Data for Non-Aqueous Electrolyte Solutions . Part5. Tetraalkylammonium Salts in Acetonitrile”,J.Soln. Chem.17 (1988) ,pp399-415
[3]Moattar M. T. Z. and J. S. faber ,“Isopiestic Determination of Osmotic Coefficient and Evoluation of Vapor Pressure for Electrolyte Solutions of Some Lithium Salts in Ethanol” , Fluid Phase Equilibria 166 (1999),pp207-223
[4]Wang T. T. and C. C. Kuo,“Solubility, Conductance, Association, and partition of Some Quaternary Ammonium Salts in Organic/water System”, J. Chin. Inst.Chem Engrs. ,(2002) in Press.
[5]Fawcett W. R.and A. C.Tikanen,“Role of Solvent Permitlivity in Estimation of Electolyte Activity Coefficients on the Basis of the Mean Spherical Approximate”J. Phys. Chem ,100 (1996),pp 4251-4255
[6]Badarayam R. and Anil Kumar,“A Sample Model for Estimation of Activity coefficients of Salts in Aqueous and aqueous Solution and Their Mixtures up to High Temperatures” ,Ind. Eng. Chem. Res. 40 (2001),pp 1996-2003
[7]王天財、黃定加與葉茂榮,“芐基氯之相轉移催化取代作用與溶劑對在兩相分佈之影響”,國立成功大學化工所七十九年博士論文.
[8]沈雨生 ,“離子對的聚集作用及幾種對稱溴化烷基銨鹽的合成(IV)”, 吉林大學自然科學學報 , 1987, pp113-116.
[9]Sumitomo Chemical Co., Ltd. ;“Tetra-n-butylammonium Bromide”, Jpn. Kokai Tokkyo Koho JP 59 27,854 [84,27,854] (Cl. C07C87/30) (C.A., Vol.101, 54549h)
[10]Danilova , O. I. ; Esikova , I. A. ; Yufit , S. S. ;“Exchange Reactions in Two-Phase Catalytic Systems. II. Ionic Halide Exchange Between an Onium Salt and Solid Alkali Metal Salts”, Izv. Akad. Nauk USSR , Ser. Khim. ,1988, pp314-316, (C.A., Vol.109, 169773j)
[11]Bockris J. O.and Reddy A. K. N., “Modern Electrochemistry”, Plenum Publishing Company Ltd, 1977.
[12]John O’M. Bockris and Amulya K. N. Reddy, “Modern Electrochemistry”, second edition ionics.
[13]Fuoss R. M.and Kraus C. A., “Properties of Electrolytic Solutions. IV. The Conductance Minimum and the Formation of Triple Ions Due to the Action of Colomb Forces”, J. Am. Chem. Soc., 1957, pp.2387~2399.
[14]Coetzee J. F. and Cunningham G. P, “Ebaluation of Single Ion Conductivities in Acetonitrile, Nitromethane, and Nitrobenzene Using Tetraisoamylammonium Tetraisoamylboride as Reference Electrolyte”, J. Amer Chem Soc., 1965, pp.2529~2534.
[15]Krumgalz B. S., “Dimensions of Tetra-alkyl(aryl)onium Ions”, J. Chem. Soc., Faraday Trans. 1., 1982, pp.437~449.
[16]Gill D. S., “New Approach for the Evaluation of Single-ion Conductances in Pure and Mixed Non-aqueous Solvents”, J. Chem. Soc., Faraday Trans. 1., 1981, pp.751~758.
[17]林家弘”四丁基鹽之溶解度、締合常數、活性係數及分佈係數”,國立中央大學化材所九十年度碩士論文.
[18]Asai S., Nakamura H.and Furuichi Y., “The Distribution and Dissociation Equilibria of Phase-Transfer Catalyst Tricapryl -methylammonium Chloride and its Aqueous-Phase Mass”, J. Chem. Eng. Jap., 1998, pp.653~658.
[19]Wu H. S., Fang T. R. and Meng S. S., “Equilibrium and Extraction of Quaternary Salts in an Organic Solvent/Water System”, J. Chin. Inst. Chem. Engrs., 1998, pp.99~108.
[20]Pitzer K. S., “Thermodynamics of Electrolytes. 1. Theoretical Basis and General Equations”, J. Phys. Chem., 1972, pp.268~277.
[21]Ehud Pines, “A new derivation of approximate limiting laws for ionic activities”,Chemical Physics Letters., (1998), pp270-276.
[22]Raymond M. Fuoss and Charles A. Kraus “Ionic Association. Ⅱ. Several Salts in Dioxane-Water Mixtures”. , 1957, pp. 3304~3310.
[23]Barthel J. and Kunz. W, “Vapor Pressure Data for Non-aqueous Electrolyte Solutions. Part 5. Tetraalkylammonium Salts in Acetonitrile”., J. Solut Chem., 1988, pp. 399~415.
[24]Lindenbaum. S and Botd G. E,”Osmotic and Activity Coefficients for the Symmetrical Tetraalkyl Ammonium Halides in Aqueous Solution at 25℃., 1994, pp.911~917.