跳到主要內容

簡易檢索 / 詳目顯示

研究生: 邱盈蒼
Ying-Cang Qiu
論文名稱: 垂直式有機發光電晶體 之點矩陣式微米尺寸面板設計與製作
Vertical Organic Light-emitting Transistors of the Micron Size Panel Design and Fabrication
指導教授: 張瑞芬
Jui-Fen Chang
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程學系
Department of Optics and Photonics
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 119
中文關鍵詞: 垂直式有機電晶體垂直式有機發光電晶體高介電常數介電層面板設計微影製程
外文關鍵詞: Vertical Organic Transistors, Vertical Organic Light-emitting Transistors, High-k Dielectric Layer, Panel Design, photolithography
相關次數: 點閱:7下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文以製作微米尺寸垂直式有機發光電晶體(Vertical organic light-emitting transistors, VOLETs)陣列為主,除了詳細說明8×8點矩陣式面板的設計與製作流程之外,還清楚解釋其背後原因。
    透過原子層沉積(ALD)及曝光顯影等技術,製作出垂直式有機發光電晶體面板。使用ALD沉積高介電係數的三氧化二鋁與氧化鉿作為雙層介電層,並以ALD沉積N-type半導體材料氧化鋅,同時搭配綠光有機材料PFO:F8BT作為發光層。藉由顯影蝕刻方式將氧化鋅做微小圖案化,以達到單一像素尺寸最小可達到10μm×15μm的發光面積。透過光學微影技術,將每一道光罩圖案精準製作在元件上,使微小面積下有64個單一垂直式有機發光電晶體。同時發現電荷下注入式的垂直有機發光電晶體結構中,裸露出的氧化鋅面積與發光面積是一致的,利用此現象來定義發光面積。最後利用Arduino微控制器對面板進行驅動並成功發出10μm×15μm面積的綠光。


    In this thesis, micro-sized Vertical organic light-emitting transistors (VOLETs) arrays, in addition to explaining the design and manufacturing process of 8 × 8 dot matrix panel in detail, the reasons behind it are also explained clearly.
    Through the technologies of atomic layer deposition (ALD) and exposure development, a vertical organic light-emitting transistor panel is fabricated. ALD was used to deposit aluminum oxide and hafnium oxide with a high dielectric constant as a double-layer dielectric layer, and ALD was used to deposit an N-type semiconductor material, zinc oxide, and a green organic material, PFO: F8BT, was used as a light-emitting layer. The zinc oxide is micro-patterned by a development etching method, so as to achieve a minimum light emitting area of a single pixel size of 10 μm × 15 μm. Through optical lithography technology, each photomask pattern is accurately fabricated on the substrate
    , so that there are 64 cell of the vertical organic light-emitting transistors under the micro size area. At the same time, it was found that in the vertical organic light-emitting transistor structure of the downward injection type of charge, the area of the exposed zinc oxide and the light-emitting area are consistent, and this phenomenon is used to define the light-emitting area. Finally, the panel is driven by an Arduino microcontroller and a 10μm × 15μm area is successfully radiant green light.

    摘要 I Abstract II 目錄 III 圖表目錄 VI 第一章 緒論 1 1-1 前言 1 1-2 傳統有機薄膜電晶體 2 1-3 蕭特基基底垂直電晶體 4 1-4 有機發光二極體顯示器 10 1-5 研究目的與動機 11 第二章 基本理論 12 2-1 垂直式電晶體之工作原理 12 2-1-1 垂直式電晶體-關狀態操作機制 14 2-1-2 垂直式電晶體-開狀態操作機制 17 2-1-3 垂直式電晶體-轉換特性曲線與開/關電流比 20 2-2 有機發光二極體之工作原理 21 第三章 元件材料與實驗儀器 24 3-1 介電層材料 25 3-1-1 三氧化二鋁 25 3-1-2 二氧化鉿 26 3-1-3 雙層介電層 28 3-1-4 有機發光層材料介紹 29 3-1-5 金屬電極材料與能階 30 3-2 實驗儀器 31 3-2-1 原子層沉積(Atomic Layer Deposition, ALD) 31 3-2-2 熱蒸鍍機(Thermal Evaporation Coater) 37 3-2-3 阻抗分析儀(LF Impedepance Analyzer) 38 3-2-4 手套箱(Glove Box) 39 3-2-5 旋轉塗佈機(Spin Coater) 40 3-2-6 紫外光/可見光譜儀(Ultraviolet-Visible Spectroscopy) 40 3-2-7 紫外光臭氧清洗機(UV-Ozone) 41 3-2-8 表面輪廓儀(Alpha-Step profile meter) 41 3-2-9 半導體參數分析儀(Semiconductor Parameter Analyzer, SPA) 42 3-2-10 手動光罩對準曝光儀(Mask and Bond Aligner) 43 3-2-11 Arduino Uno開發板 44 第四章 實驗方法 46 4-1 氧化銦錫(ITO)導電膜玻璃圖案設計 46 4-2 定義金屬膜對準鑰匙(Alignment key) 49 4-3 氧化銦錫(ITO)導電膜玻璃圖案蝕刻 55 4-4 ALD製作雙層介電層與半導體層 58 4-5 氧化鋅半導體層圖案蝕刻 59 4-6 定義金屬源極區域 62 4-7 源極絕緣層氧化矽(SiOx)鍍製 68 4-8 倒置結構有機發光二極體之陣列製程 71 第五章 結果與討論 75 5-1 高電容密度雙層介電層 75 5-2 點矩陣式微米尺寸面板之光罩設計 77 5-2-1 定義金屬膜對準鑰匙(Alignment key)圖案之光罩設計 77 5-2-2 定義氧化銦錫(ITO)圖案之光罩設計 78 5-2-3 定義半導體層圖案之光罩設計 81 5-2-4 定義金屬源極圖案之光罩設計 82 5-2-5 定義金屬源極絕緣層圖案之光罩設計 83 5-2-6 定義金屬共汲極圖案之金屬遮罩設計 84 5-2-7 點矩陣式微米尺寸面板製作總結 85 5-3 點矩陣式面板程序控制 86 5-4 點矩陣式微米尺寸面板量測方法與結果 92 第六章 結論與未來展望 96 參考文獻 97

    [1] Sekitani, T., Zschieschang, U., Klauk, H., & Someya, T. (2010). Flexible organic transistors and circuits with extreme bending stability. Nature Materials, 9(12), 1015–1022.
    [2] Wu, K.-Y., Tao, Y.-T., Ho, C.-C., Lee, W.-L., & Perng, T.-P. (2011). High-performance space-charge-limited transistors with well-ordered nanoporous aluminum base electrode. Applied Physics Letters, 99(9), 093306.
    [3] Chao, Y.-C., Chung, C.-H., Zan, H.-W., Meng, H.-F., & Ku, M.-C. (2011). High-performance vertical polymer nanorod transistors based on air-stable conjugated polymer. Applied Physics Letters, 99(23), 233308.
    [4] Fujimoto, K., Hiroi, T., & Nakamura, M. (2005). Organic Static Induction Transistors with Nano-Hole Arrays Fabricated by Colloidal Lithography. e-Journal of Surface Science and Nanotechnology, 3, 327–331.
    [5] Fujimoto, K., Hiroi, T., Kudo, K., & Nakamura, M. (2007). High-Performan-ce, Vertical-Type Organic Transistors with Built-In Nanotriode Arrays. Advanced Materials, 19(4), 525–530.
    [6] Ma, L., & Yang, Y. (2004). Unique architecture and concept for high-performance organic transistors. Applied Physics Letters, 85(21), 5084–5086.
    [7] Chen, C.-Y., Chao, Y.-C., Meng, H.-F., & Horng, S.-F. (2008). Light-emitting polymer space-charge-limited transistor. Applied Physics Letters, 93(22), 223301.
    [8] Nakamura, K., Hata, T., Yoshizawa, A., Obata, K., Endo, H., & Kudo, K. (2008). Improvement of Metal–Insulator–Semiconductor-Type Organic Light-Emitting Transistors. Japanese Journal of Applied Physics, 47(3), 1889–1893.
    [9] Liu, B., McCarthy, M. A., Yoon, Y., Kim, D. Y., Wu, Z., So, F., … Rinzler, A. G. (2008). Carbon-Nanotube-Enabled Vertical Field Effect and Light-Emitting Transistors. Advanced Materials, 20(19), 3605–3609.
    [10] McCarthy, M. A., Liu, B., Donoghue, E. P., Kravchenko, I., Kim, D. Y., So, F., & Rinzler, A. G. (2011). Low-Voltage, Low-Power, Organic Light-Emitting Transistors for Active Matrix Displays. Science, 332(6029), 570–573.
    [11] Keum, C.-M., Lee, I.-H., Lee, S.-H., Lee, G. J., Kim, M.-H., & Lee, S.-D. (2014). Quasi-surface emission in vertical organic light-emitting transistors with network electrode. Optics Express, 22(12), 14750.
    [12] HORIUCHI, K. (2003). Low-temperature transport of C60 thin-film FET. Physica B: Condensed Matter, 329-333, 1538–1539.
    [13] Kitamura, M., Kuzumoto, Y., Kamura, M., Aomori, S., & Arakawa, Y. (2007). High-performance fullerene C60 thin-film transistors operating at low voltages. Applied Physics Letters, 91(18), 183514.
    [14] Facchetti, A., Mushrush, M., Katz, H. E., & Marks, T. J. (2003). n-Type Building Blocks for Organic Electronics: A Homologous Family of Fluorocarbon-Substituted Thiophene Oligomers with High Carrier Mobility. Advanced Materials, 15(1), 33–38.
    [15] Stadlober, B., Zirkl, M., Beutl, M., Leising, G., Bauer-Gogonea, S., & Bauer, S. (2005). High-mobility pentacene organic field-effect transistors with a high-dielectric-constant fluorinated polymer film gate dielectric. Applied Physics Letters, 86(24), 242902.
    [16] Hofmockel, R., Zschieschang, U., Kraft, U., Rödel, R., Hansen, N. H., Stolte, M., … Klauk, H. (2013). High-mobility organic thin-film transistors based on a small-molecule semiconductor deposited in vacuum and by solution shearing. Organic Electronics, 14(12), 3213–3221.
    [17] Yang, S. Y., Shin, K., & Park, C. E. (2005). The Effect of Gate-Dielectric Surface Energy on Pentacene Morphology and Organic Field-Effect Transistor Characteristics. Advanced Functional Materials, 15(11), 1806–1814.
    [18] Chua, L.-L., Zaumseil, J., Chang, J.-F., Ou, E. C.-W., Ho, P. K.-H., Sirringhaus, H., & Friend, R. H. (2005). General observation of n-type field-effect behaviour in organic semiconductors. Nature, 434(7030), 194–199.
    [19] Ma, L., & Yang, Y. (2004). Unique architecture and concept for high-performance organic transistors. Applied Physics Letters, 85(21), 5084–5086.
    [20] Ben-Sasson, A. J., Avnon, E., Ploshnik, E., Globerman, O., Shenhar, R., Frey, G. L., & Tessler, N. (2009). Patterned electrode vertical field effect transistor fabricated using block copolymer nanotemplates. Applied Physics Letters, 95(21), 213301.
    [21] Yu, H., Dong, Z., Guo, J., Kim, D., & So, F. (2016). Vertical Organic Field-Effect Transistors for Integrated Optoelectronic Applications. ACS Applied Materials & Interfaces, 8(16), 10430–10435.
    [22] Sheleg, G., Greenman, M., Lussem, B., & Tessler, N. (2017). Removing the current-limit of vertical organic field effect transistors. Journal of Applied Physics, 122(19), 195502.
    [23] Lee, G., Lee, I.-H., Park, H.-L., Lee, S.-H., Han, J., Lee, C., … Lee, S.-D. (2017). Vertical organic light-emitting transistor showing a high current on/off ratio through dielectric encapsulation for the effective charge pathway. Journal of Applied Physics, 121(2), 024502.
    [24] Ben-Sasson, A. J., & Tessler, N. (2011). Patterned electrode vertical field effect transistor: Theory and experiment. Journal of Applied Physics, 110(4), 044501.
    [25] Preezant, Y., & Tessler, N. (2003). Self-consistent analysis of the contact phenomena in low-mobility semiconductors. Journal of Applied Physics, 93(4), 2059–2064.
    [26] Kumar, P., Wiedmann, M. K., Winter, C. H., & Avrutsky, I. (2009). Optical properties of Al2O3 thin films grown by atomic layer deposition. Applied Optics, 48(28), 5407.
    [27] Tak, Y.-H., Kim, K.-B., Park, H.-G., Lee, K.-H., & Lee, J.-R. (2002). Criteria for ITO (indium–tin-oxide) thin film as the bottom electrode of an organic light emitting diode. Thin Solid Films, 411(1), 12–16.
    [28] Norasetthekul, S., Park, P. Y., Baik, K. H., Lee, K. P., Shin, J. H., Jeong, B. S., … Pearton, S. J. (2002). Etch characteristics of HfO2 films on Si substrates. Applied Surface Science, 187(1-2), 75–81.
    [29] Paraschiv, V., Claes, M., Baklanov, M. R., Boullart, W., De Gendt, S., & Vanhaelemeersch, S. (2005). HF Based Solutions for HfO2 Removal; Effect of pH and Temperature on HfO2: SiO2 Etch Selectivity. Solid State Phenomena, 103-104, 97–102.
    [30] Im, K.-S., Won, C.-H., Vodapally, S., Son, D.-H., Jo, Y.-W., Park, Y., … Lee, J.-H. (2016). Lateral GaN nanowire prepared by using two-step TMAH wet etching and HfO2 sidewall spacer. Journal of Crystal Growth, 441, 41–45.
    [31] Zhaoying Hu, James B. Hannon, Hongsik Park, Shu-Jen Han, George S.Tulevski, Ali Afzali, Michael Liehr(2017). Photo-Chemically Directed Self-Assembly of Carbon Nanotubes on Surfaces. NASA ADS
    [32] Oh, J., Myoung, J., Bae, J. S., & Lim, S. (2011). Etch Behavior of ALD Al2O3 on HfSiO and HfSiON Stacks in Acidic and Basic Etchants. Journal of The Electrochemical Society, 158(4), D217.
    [33] Yan, G., Chan, P. C. H., Hsing, I.-M., Sharma, R. K., Sin, J. K. O., & Wang, Y. (2001). An improved TMAH Si-etching solution without attacking exposed aluminum. Sensors and Actuators A: Physical, 89(1-2), 135–141.
    [34] Fujitsuka N, Hamaguchi K, Funabashi H, Kawasaki E, Fukada T (2004). Aluminum protected silicon anisotropic etching technique using tmah with an oxidizing agent and dissolved Si. R&D Rev Toyota CRDL 39(2):34–40.
    [35] McKenna, K., Shluger, A., Iglesias, V., Porti, M., Nafría, M., Lanza, M., & Bersuker, G. (2011). Grain boundary mediated leakage current in poly-crystalline HfO2 films. Microelectronic Engineering, 88(7), 1272–1275.
    [36] Kim, Y.-H., Kwon, J.-H., Shin, S.-I., Oh, B.-Y., Park, H.-G., Paek, K.-K., … Seo, D.-S. (2009). Organization of Pentacene Molecules on Anisotropic Ultrathin HfO2/Al2O3 Templates for Organic Thin-Film Transistors Using an Ion-Beam Treatment. Electrochemical and Solid-State Letters,
    12(8), H305.
    [37] Chang, Y. C., Huang, M. L., Chang, Y. H., Lee, Y. J., Chiu, H. C., Kwo, J., & Hong, M. (2011). Atomic-layer-deposited Al2O3 and HfO2 on GaN: A comparative study on interfaces and electrical characteristics. Microelectronic Engineering, 88(7), 1207–1210.
    [38] Suzuki, R., Taoka, N., Yokoyama, M., Lee, S., Kim, S. H., Hoshii, T., … Takagi, S. (2012). 1-nm-capacitance-equivalent-thickness HfO2/Al2O3/InGaAs metal-oxide-semiconductor structure with low interface trap density and low gate leakage current density. Applied Physics Letters, 100(13), 132906.
    [39] Kabra, D., Lu, L. P., Song, M. H., Snaith, H. J., & Friend, R. H. (2010). Efficient Single-Layer Polymer Light-Emitting Diodes. Advanced Materials, 22(29), 3194–3198.
    [40] Johnson, R. W., Hultqvist, A., & Bent, S. F. (2014). A brief review of atomic layer deposition: from fundamentals to applications. Materials Today, 17(5), 236–246.
    [41] Groner, M. D., Fabreguette, F. H., Elam, J. W., & George, S. M. (2004). Low-Temperature Al2O3Atomic Layer Deposition. Chemistry of Materials, 16(4), 639–645.
    [42] Alan J. Elliot, Chunrui Ma, Rongtao Lu, Melisa Xin, Siyuan Han, Judy Z. Wu, Ridwan Sakidja, Haifeng Yu(2014). Controlling the thickness of Josephson tunnel barriers with atomic layer deposition. Applied Super-conductivity Conference.
    [43] Ahmed, B., Xia, C., & Alshareef, H. N. (2016). Electrode surface engineering by atomic layer deposition: A promising pathway toward better energy storage. Nano Today, 11(2), 250–271.
    [44] Hausmann, D. M., & Gordon, R. G. (2003). Surface morphology and crystallinity control in the atomic layer deposition (ALD) of hafnium and zirconium oxide thin films. Journal of Crystal Growth, 249(1-2), 251–261.
    [45] Samanta, P. K. (2017). Review on Wet Chemical Growth and Anti-bacterial Activity of Zinc Oxide Nanostructures. Journal of Tissue Science & Engineering, 08(01).
    [46] Baik, D. G., & Cho, S. M. (1999). Application of sol-gel derived films for ZnO/n-Si junction solar cells. Thin Solid Films, 354(1-2), 227–231.
    [47] Natsume, Y., & Sakata, H. (2000). Zinc oxide films prepared by sol-gel spin-coating. Thin Solid Films, 372(1-2), 30–36.
    [48] Norris, B. J., Anderson, J., Wager, J. F., & Keszler, D. A. (2003). Spin-coated zinc oxide transparent transistors. Journal of Physics D:Applied Physics, 36(20), L105–L107.
    [49] Lu, W., Dong, Y., Li, C., Xia, Y., Liu, B., Xie, J., … Zhang, Y. (2014). Preparation of ZnO films with variable electric field-assisted atomic layer deposition technique. Applied Surface Science, 303, 111–117.
    [50] Lujala, V., Skarp, J., Tammenmaa, M., & Suntola, T. (1994). Atomic layer epitaxy growth of doped zinc oxide thin films from organometals. Applied Surface Science, 82-83, 34–40.
    [51] Lu, L. P., Kabra, D., & Friend, R. H. (2012). Barium Hydroxide as an Interlayer Between Zinc Oxide and a Luminescent Conjugated Polymer for Light-Emitting Diodes. Advanced Functional Materials, 22(19), 4165–4171.


    QR CODE
    :::