跳到主要內容

簡易檢索 / 詳目顯示

研究生: 林章權
Jhang-cyuan Lin
論文名稱: 逐步加速壽命試驗之貝氏可靠度分析與最佳化設計
Bayesian Analysis and Optimal Design in Accelerated Life Tests with Progressively censored Data
指導教授: 樊采虹
Tsai-hung Fan
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 統計研究所
Graduate Institute of Statistics
畢業學年度: 96
語文別: 英文
論文頁數: 72
中文關鍵詞: 貝氏分析型II逐步設限計畫型I逐步設限計畫加速壽命試驗
外文關鍵詞: Bayesian method, Progressively Type-II censoring scheme, Progressively Type-I censoring scheme, Accelerated life testing
相關次數: 點閱:15下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 加速壽命試驗 (Accelerated Life Testing) 是在異於正常的使用環境下,加速產品的失效以利收集資料,再推導出產品在正常使用狀況下的壽命。本篇論文主要討論在型I與型II逐步設限計畫下應力加速壽命試驗之統計推論及最佳化實驗設計問題。假設產品壽命為指數分配且平均壽命與應力具對數線性關係之模型,我們使用最大概似法和貝氏分析(Bayesian analysis)探討可靠度分析,結果顯示即使在主觀性弱的先驗分佈訊息下仍有助於參數之統計推論。另外並提出在型I逐步設限計畫下階段應力試驗時間與等階段應力增量的最佳設計,同時在型II逐步設限計畫下探討每一階段最佳試驗比例的改變點。此外,也提出在型II逐步設限計畫下同時對試驗時間和參數估計變異數的最佳化準則。最後並以數值模擬做驗證與比較。


    Accelerated life testing of products is used to get information quickly on their lifetime distribution. In this thesis, we discuss k-stage step-stress accelerated life-tests under the progressively Type-I and Type-II censoring schemes, respectively. An exponential lifetime distribution with mean life time that is a log-linear function of the stress variable is considered. The classical maximum likelihood method as well as a fully Bayesian method based on the Markov chain Monte Carlo (MCMC) technique are developed for inference on all the related parameters. From empirical studies, it shows that the Bayesian methodology is quite accurate in drawing inference even in the case of noninformative prior. Under the equi-spaced stress experiment, the optimal stress increment and equal time duration are investigated for Type-I censored data, whereas the optimal sampling plan is discussed under Type-II censoring scheme together with a criterion based on minimizing the expected experimental time and variance of the maximum likelihood estimator simultaneously. Numerical examples are presented for illustration.

    1 Introduction 1.1 Motivation and Background 1.2 Literature Review 1.3 Overview 2 Model Description and Assumptions 2.1 Progressively Type-I Censoring Scheme 2.1.1 ML Inference Under Type-I Censoring Scheme 2.1.2 Progressive Censoring in Small Samples 2.1.3 Bayesian Inference Under Type-I Censoring Scheme 2.1.4 The Jeffreys Prior 2.2 Progressively Type-II Censoring Scheme 2.2.1 Statistical Inference Under Type-II Censoring Scheme 3 Optimal Designs of Accelerated Lifetime Test 3.1 Type-I Censoring Scheme 3.1.1 Variance-Optimality 3.1.2 D-Optimality 3.1.3 Numerical Illustrations 3.1.4 A-Optimality 3.1.5 Minimax Optimality 3.2 Type-II Censoring Scheme 3.2.1 Variance-optimality, D-optimality and A-optimality 4 Numerical Illustration 4.1 Statistical Inference on the Simulation Data in Type- I ALT 4.2 Optimal Design on the Simulation Data 4.3 Statistical Inference on the Simulation Data in Type- II ALT 5 Concluding Remarks

    [1] Bagdonavicius, V. and Nikulin, M. (2002). Accelerated Life Models: Modeling and Statistical Analysis. Chapman & Hall, Boca Raton, Florida.
    [2] Bai, D.S., Kim, M.S. and Lee, S.H. (1989). Optimum simple step-stress accelerated life tests with censoring. IEEE Transactions on Reliability, vol. 38, 528-532.
    [3] Balakrishnan, N. and Aggarwala, R. (2000). Progressive Censoring: Theory, Methods,and Applications. Birkhauser, Boston.
    [4] Balakrishnan, N. and Han, D. (2008). Optimal step-stress testing for progressively Type-I censored data from exponential distribution. J. Statist. Plann. Inference, to appear.
    [5] Berger, J.O. (1985). Statistical Decision Theory and Bayesian Analysis. Springer, New York.
    [6] Casella, G. and Berger, R.L. (2002). Statistical inference, 2nd edn. Duxbury, Pacific Grove, CA.
    [7] Chen, Z. and Mi, J. (1996). Confidence interval for the mean of the exponential distribution, based on grouped data. IEEE Transactions on Reliability 45, 671-677.
    [8] Cheng, K.F. and Chen, C.H. (1988). Estimation of the Weibull parameters with grouped data. Communications in Statistics-Theory and Methods 17, 325-341.
    [9] Chib, S. and Greenberg, E. (1995). Understanding the Metropolis-Hastings algorithm. Amer. Statist. 49, 327-335.
    [10] Cohen A.C. (1963). Progressively censored samples in life testing. Technometries 5: 327-329.
    [11] Cohen, A.C. (1991). Truncated and Censored Samples: Theory and Applications. Marcel Dekker, New York.
    [12] Fan T.H., Wang W.L. and Balakrishnan, N. (2008). Exponential progressive step-stress life-testing with link function based on Box-Cox transformation. Journal of Statistical Planning and Inference. 138, 2340-2354.
    [13] Gilks, W.R. and Wild, P. (1992). Adaptive rejection sampling for Gibbs sampling. J. Roy. Statist. Soc. Ser. C 41, 337-348.
    [14] Gouno, E., Sen, A. and Balakrishnan, N. (2004). Optimal step-stress test under progressive Type-I censoring. IEEE Transactions on Reliability, vol. 53, 383-393.
    [15] Hastings, W.K. (1970). Monte Carlo sampling methods using Markov chains and their applications. Biometrika 57, 97-109.
    [16] Jeffreys, H. (1961). Theory of Probability (3rd edn.) Oxford University Press, London.
    [17] Khamis, I.H. and Higgins, J.J. (1996). Optimum 3-step step-stress tests. IEEE Transactions on Reliability, vol.45, 341-345.
    [18] Khamis, I.H. (1997). Optimum M-step, step-stress test with k stress variables. Comm. Statist. Comput. Simul. 26, 1301-1313.
    [19] Khamis, I.H. and Higgins, J.J. (1998). A new model for step-stress testing. IEEE Transactions on Reliability, vol.47, 131-134.
    [20] Meeker, W.Q. and Escobar, L.A. (1998). Statistical Methods for Reliability Data, John Wiley & Sons, New York.
    [21] Miller, R. and Nelson, W. (1983). Optimum simple step stress plans for accelerated life testing. IEEE Trans. Reliab. 32, 59-65.
    [22] Nelson, W. (1980). Accelerated life testing - step-stress models and data analysis. IEEE Transactions on Reliability, vol. 29, 103-108.
    [23] Nelson, W. (1990). Accelerated Testing: Statistical Models, Test Plans, and Data Analyses, John Wiley & Sons, New York.
    [24] Robert, C.P. (2001). The Bayesian choice : from decision-theoretic foundations to computational implementation. Springer, New York.
    [25] Roberts, G.O., Gelman, A. and Gilks, W.R. (1997). Weak Convergence and Optimal Scaling of Random Walk Metropolis Algorithms. Ann. Appl. Probab. 7, 110-20.
    [26] van Dorp, J.R., Mazzuchi, T.A., Fornell, G.E. and Pollock, L.R. (1996). A Bayes approach to step-stress accelerated life testing. IEEE Trans. Reliab. 45, 491-498.
    [27] van Dorp, J.R. and Mazzuchi, T.A. (2004). A general Bayes exponential inference model for accelerated life testing. J. Statist. Plann. Inference 119, 55-74.
    [28] Wu, S.J. and Chang, C.T. (2003). Inference in the Pareto distribution based on progressive Type II censoring with random removals. J. Appl. Statist. 30(2): 163-172.
    [29] Wu, S.J., Lin, Y.P. and Chen, Y.J. (2006). Planning step-stress life test with progressively type I group-censored exponential data. Statist. Neerlandica 60, 46-56.
    [30] Yeo, K.P. and Tang, L.C. (1999). Planning step-stress life-test with a target accelerated-factor. IEEE Trans. Reliab. 48, 61-67.

    QR CODE
    :::