跳到主要內容

簡易檢索 / 詳目顯示

研究生: 楊名慧
Ming-Hui Yang
論文名稱: 氮化銦鎵奈米碟在氮化鎵奈米柱上之光學性質研究
Optical properties of InGaN Nano Disk on GaN nanorods
指導教授: 徐子民
Tzu-Min, Hsu
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 物理學系
Department of Physics
畢業學年度: 96
語文別: 中文
論文頁數: 100
中文關鍵詞: 氮化銦鎵生命期陰極電子束螢光光譜光激發螢光光譜時間鑑別光激發螢光光譜奈米柱氮化鎵
外文關鍵詞: GaN nanorod, InGaN, time-resolved photoluminescence, photoluminescence, lifetime
相關次數: 點閱:15下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本篇論文探討成長於矽 (111) 方向上之氮化(銦)鎵奈米柱的光學特性分析,其中奈米柱結構之形貌係用掃描式電子顯微鏡及陰極電子束螢光光譜觀測,而奈米柱上之奈米碟的發光特性係用ㄧ系列之光激發螢光光譜及時間鑑別光激發螢光光譜來探討其發光特性以及載子的生命期。
    我們利用改變雷射波長之光激發螢光光譜證明氮化銦鎵奈米碟之發光波段約為500~750 nm,此發光層屬於紅光波段。同時我們觀測到多道光干涉現象所造成之多重峰值,利用正向收光、側向收光以及建設性干涉條件計算,這個干涉現象是由奈米柱與空氣以及基板的界面做反射而形成的。時間鑑別光激發螢光光譜實驗中,我們驗證氮化銦鎵奈米碟有兩個生命期。藉由估計發光強度,我們推測載子生命期較短者來自於為奈米碟外圍旁邊之載子生命期係由側向螢光量得,而載子生命期較長者來自於奈米碟中間內部之載子生命期係由正向螢光量得。
    最後我們驗證奈米柱結構可以造成應力釋放,使載子躍遷所需之時間縮短,螢光的生命期縮短,發光速率會較快。利用奈米柱結構可以有效降低其缺陷密度並釋放其應力,這些能有效改善發光層的發光效率,但是其受表面態的影響很大。如何抑制這些表面態的影響應是值得注意的。


    This thesis investigates the optical properties of InGaN/GaN nanorods on Si(111) substrate grown by plasma-enhanced molecular beam epitaxy (PA-MBE). The structural properties of nanorods are explored by scanning electron microsope (SEM) and cathodoluminescence (CL). The optical emission properties of the InGaN/GaN nanorods are studied by photoluminescence (PL) as well as time-resolved photoluminescence (TRPL).
    The luminescence of InGaN layer can be proved emission at 500-750 nm by tuning the laser excitation energies above and below GaN band gap energy. The photoluminescence of InGaN layer also displays multiple peaks, we measure the luminescence at normal and 90o direction and confine with simple calculations to prove these peaks are originated from multi-beam interference, while the reflected planes are GaN/air and GaN/substrate interface.
    Two decay time constants are observed for InGaN layer in time-resolved photoluminescence measurements. After estimating their integrated intensity, we assume the shorter one is the lifetime of carriers near InGaN/air interface at lateral which can be measured at 90o direction and the longer one is the lifetime of carriers inside InGaN layer which can be measured at normal direction.
    Comparing with the lifetime of quantum wells, the reduced lifetime of InGaN layer on the nanorods is caused by effective suppressing the piezoelectric field due to strain relaxation. Growth of active layer on nanorods can effective reduces the density of defects and improves the spontaneous emission rate; the remained problem may be the nonradiative processes caused by the surface states.

    中文摘要…………………………………………………………….……..i 英文摘要……………………………………………………………….….iii 誌謝………………………………………………………………………...v 目錄……………………………………………………………………….vii 圖目錄……………………………………………………………………..ix 表目錄……………………………………………………………....……xiii 第一章 簡 介………………………………………….…………………..1 1-1 氮化(銦)鎵之發展………………………………………...1 1-2 氮化(銦)鎵奈米柱簡介……………………………….…..5 第二章 樣 品 結 構 介 紹……………………………………………...7 2-1 氮化(銦)鎵奈米柱樣品之成長及結構…………………...7 2-2 樣品之特色………………………………………………10 第三章 實 驗 原 理 與 量 測 系 統………………………………...11 3-1 掃描式電子顯微鏡的原理及實驗裝置…………………11 3-2 陰極電子束螢光光譜的原理及實驗裝置………………15 3-3 光激發螢光光譜的原理及實驗裝置………………...….16 3-3-1 光激發螢光光譜原理……………………………16 3-3-2 光激發螢光實驗架設系統………………………18 3-4 微光激發螢光光譜的原理及實驗裝置…………………20 3-5 時間鑑別光激發螢光光譜的原理及實驗裝置…………23 第四章 實 驗 結 果 與 分 析………………………………………...30 4-1 氮化(銦)鎵奈米柱之掃描式電子顯微鏡影像………….30 4-2 氮化(銦)鎵奈米柱之陰極電子束螢光光譜…………….33 4-3 氮化(銦)鎵奈米柱之光激發螢光光譜……………….…40 4-4 氮化銦鎵奈米柱之正向收光與側向收光之光激發螢光 光譜實驗……………………………………………….51 4-5 氮化銦鎵奈米碟之時間鑑別光激發螢光光譜 實驗……………………………………………….……55 4-5-1 能量變化之正向收光螢光光譜…………………55 4-5-2 能量變化之側向收光螢光光譜…………………62 4-5-3 表面態發光速率之探討…………………………69 4-5-4 低溫之時間鑑別光激發螢光光譜………………71 第五章 結 論……………………………………………………….……76 參考文獻………………………………………………….………………78

    [ 1 ] Chung-Lin Wu, Jhih-Chun Wang, Meng-Hsuan Chan, Tom T. Chen, and Shangjr Gwo, Appl. Phys. Lett. 83, 4530 (2003)
    [ 2 ] S. Gwo, C.-L. Wu, C.-H. Shen, W.-H. Chang, T. M. Hsu, J.-S. Wang, and J.-T. Hsu, Appl. Phys. Lett. 84, 3765 (2004)
    [ 3 ] C.-L. Wu, C.-H. Shen, H.-W. Lin, H.-M. Lee, and S. Gwo, Appl. Phys. Lett. 87, 241916 (2005)
    [ 4 ] C.-H. Shen, H.-Y. Chen, H.-W. Lin, S. Gwo, A. A. Klochikhin and V. Yu. Davydov, Appl. Phys. Lett. 88, 253104 (2006)
    [ 5 ] Hung-Ying Chen, Hon-Way Lin, Chang-Hong Shen, and Shangjr Gwo, Appl. Phys. Lett. 89, 243105 (2006)
    [ 6 ] Chung-Lin Wu, Hong-Mao Lee, Cheng-Tai Kuo, Shangjr Gwo, and Chia-Hung Hsu, Appl. Phys. Lett. 91, 042112 _2007_
    [ 7 ] T. Egawa, B. Zhang, N. Nishikawa, H. Ishikawa, T. Jimbo, and M.Umeno, J. Appl. Phys. Lett. 91, 528 (2002).
    [ 8 ] Shuji Nakamura, Masayuki Senoh, Shin-ichi Nagahama, Naruhito Iwasa, Takao, Yamada, Toshio Matsushita, Hiroyuki Kiyoku, Yasunobu Sugimoto, Tokuya Kozaki, Hitoshi Umemoto, Masahiko Sano, and Kazuyuki Chocho, Appl. Phys. Lett. 73, 832 (1998)
    [ 9 ] J.D. Brown , Ric Borges, Edwin Piner, Andrei Vescan, Sameer Singhal and Robert Therrien, Solid-State Electronics 46, 1535 (2002).
    [ 10 ] Yi Zhou, Mingyu Li, Dake Wang, Claude Ahyi, Chin-Che Tin, N. Mark Williams and Andrew Hanser, Appl. Phys. Lett. 88, 113509 (2006)
    [ 11 ] M. Sa´nchez and P. Ruterana, M. Benamara and H. P. Strunk, Appl. Phys. Lett. 82, 4471 (2003)
    [ 12 ] J. Mei, S. Srinivasan, R. Liu, and F. A. Ponce, Y. Narukawa and T. Muka, Appl. Phys. Lett. 88, 141912 (2006)
    [ 13 ] K. Y. Zang, Y. D. Wang, S. J. Chua,b_ L. S. Wang, and S. Tripathy, and C. V. Thompson, Appl. Phys. Lett. 88, 141925 (2006)
    [ 14 ] X. A. Cao, S. F. LeBoeuf, M. P. D’Evelyn, S. D.Arthur, and J. Kretchmer, C. H. Yan and Z. H. Yang, Appl. Phys. Lett. 84, 4313 (2004)
    [ 15 ] Krost and A. Dadgar, phys. stat. sol. (a) 194, 361 (2002)
    [ 16 ] Baijun Zhang, Takashi Egawa, Hiroyasu Ishikawa, Yang Liu, and Takashi Jimbo, Appl. Phys. Lett. 86, 071113 (2005)
    [ 17 ] J. Li, J. Y. Lin and H. X. Jiang, Appl. Phys. Lett. 88, 171909 (2006)
    [ 18 ] W.-H. Chang, H.-S. Chang, W.-Y. Chen, T. M. Hsu, T.-P. Hsieh, J.-I. Chyi, and N.-T. Yeh, PHYSICAL REVIEW B 72, 233302 (2005)
    [ 19 ] Wen-Hao Chang,1 Wen-Yen Chen,1 Hsiang-Szu Chang,1 Tung-Po Hsieh,2 Jen-Inn Chyi,2 and Tzu-Min Hsu1, PHYSICAL REVIEW LETTERS PRL 96, 117401 (2006)
    [ 20 ] Tung-Po Hsieh and Jen-Inn Chyia, Hsiang-Szu Chang, Wen-Yen Chen, and Tzu Min Hsu, Wen-Hao Chang, Appl. Phys. Lett. 90, 073105 (2007)
    [ 21 ] Hsiang-Szu Chang, Chieh-MingHsu, Wen-Yen Chen, Tung-Po Hsieh, Jen-InnChyi and TzuMin Hsu, Nanotechnology 19, 045714 (2008)
    [ 22 ] Hsiang-Szu Chang, Chieh-Ming Hsu, Ming-Hui Yang, Tung-Po Hsieh, Jen-Inn Chyi, and Tzu-Min Hsu, phys. stat. sol. (2008)
    [ 23 ] W. S. Su and Y. F. Chena, C. L. Hsiao and L. W. Tu, Appl. Phys. Lett. 90, 063110 (2007)
    [ 24 ] Lawrence H. Robinsa and Kris A. Bertness, Joy M. Barker, Norman A. Sanford, and John B. Schlager, JOURNAL OF APPLIED PHYSICS 101, 113506 (2007)
    [ 25 ] Jinkyoung Yoo, Young-Joon Hong, Sung Jin An, and Gyu-Chul Yia, Bonghwan Chon and Taiha Joo, Jong-Wook Kim and Jeong-Soo Lee, Appl. Phys. Lett. 89, 043124 (2006)
    [ 26 ] C H Chiu, M HLo, C F Lai, T C Lu, HW Huang, Y A Chang, THHsueh1, CC Yu, H CKuo, SCWang, C F Lin and Y K Kuo, Nanotechnology 18, 335706 (2007)
    [ 27 ] Jinkyoung Yoo, Young-Joon Hong, Sung Jin An, and Gyu-Chul Yi, Bonghwan Chon and Taiha Joo, Jong-Wook Kim and Jeong-Soo Lee, Appl. Phys. Lett. 89, 043124 (2006)
    [ 28 ] Y S Park, J H Na, R A Taylor, C M Park, K H Lee and T W Kang, Nanotechnology 17, 913 (2006)
    [ 29 ] F. Schulze,a A. Dadgar, J. Bläsing, A. Diez, and A. Krost, Appl. Phys. Lett. 88, 121114 (2006)
    [ 30 ] B. Alloing,a! C. Zinoni, V. Zwiller, L. H. Li, C. Monat, M. Gobet, G. Buchs, and A. Fioreb, E. Pelucchi and E. Kapon, Appl. Phys. Lett. 86, 101908 (2005)
    [ 31 ] Anas F. Jarjour and Robert A. Taylor, Rachel A. Oliver, Menno J. Kappers, and Colin J. Humphreys, Abbes Tahraoui, Appl. Phys. Lett. 91, 052101 (2007)
    [ 32 ] M. Bayer, O. Stern, P. Hawrylak, S. Fafard & A. Forchel, NATURE, 22, 405 (2000)
    [ 33 ] Horng-Shyang Chen, Dong-Ming Yeh, Yen-Cheng Lu, Cheng-Yen Chen, Chi-Feng Huang, Tsung-Yi Tang, C C Yang, Cen-Shawn Wu, and Chii-Dong Chen, Nanotechnology 17, 1454 (2006)
    [ 34 ] K. Kishino, A. Kikuchia, H. Sekiguchia,b, S. Ishizawa, 6473, 64730, (2007)
    [ 35 ] E. Calleja, M. A. Sa´nchez-Garcı´a, F. J. Sa´nchez, F. Calle, F. B. Naranjo, and E. Mun˜oz, U. Jahn and K. Ploog, PHYSICAL REVIEW B 62, 16826 (2000)
    [ 36 ] Y. S. Park, C. M. Park, D. J. Fu, and T. W. Kang J. E. Oh Appl. Phys. Lett. 85, 5718 (2004)
    [ 37 ] L. Cerutti, J. Ristić, S. Fernández-Garrido, and E. Calleja, A. Trampert and K. H. Ploog, S. Lazic and J. M. Calleja, Appl. Phys. Lett. 88, 213114 (2006)
    [ 38 ] C M Park, Y S Park,Hyunsik Im and T W Kang, Nanotechnology 17, 952 (2006)
    [ 39 ] Y.S. Park, Seung-Ho Lee, Jae-Eung Oh, Chang-Mo Park, Tae-Won Kang, Journal of Crystal Growth 282, 313 (2005)
    [ 40 ] Y. Kawakami, S. Suzuki, A. Kaneta, and M. Funato, A. Kikuchi and K. Kishino, Appl. Phys. Lett. 89, 163124 (2006)
    [ 41 ] SHIGEFUSA F. CHICHIBU, AKIRA UEDONO, TAKEYOSHI ONUMA, BENJAMIN A. HASKELL, ARPAN CHAKRABORTY, TAKAHIRO KOYAMA, PAUL T. FINI, STACIA KELLER, STEVEN P. DENBAARS, JAMES S. SPECK, UMESH K. MISHRA, SHUJI NAKAMURA, SHIGEO YAMAGUCHI, SATOSHI KAMIYAMA, HIROSHI AMANO, ISAMU AKASAKI5, JUNG HAN6 AND TAKAYUKI SOTA7, Nature Materials 5, 810 (2006)

    QR CODE
    :::