跳到主要內容

簡易檢索 / 詳目顯示

研究生: 陳正義
Cheng-Yi Chen
論文名稱: 不同製程參數對AA1050與AA5052陽極皮膜抗腐蝕能力的影響
Influence of corrosion resistance of different processing parameters of AA1050 and AA5052 anodic films
指導教授: 施登士
Teng-Shih Shih
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
畢業學年度: 98
語文別: 中文
論文頁數: 116
中文關鍵詞: 鹽霧試驗陽極處理電化拋處理抗腐蝕能力
外文關鍵詞: anodic treatment, electro-polishing, corrosion resistance, salt spray
相關次數: 點閱:7下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 鋁中添加鎂元素可提高鋁合金機械性質, 但也帶來了較多的介在物, 因而降低抗腐蝕能力。本實驗中將AA1050H16 與AA5052H32 兩種材料施以不同陽極條件與封孔方式。封孔方式分別以熱水與醋酸鎳溶液進行封孔處理。電化拋處理亦為參數之一,其目的是用來比較電化拋對陽極皮膜品質與抗腐蝕能力的影響。
    經由鹽霧試驗發現, AA5052H32 陽極皮膜的抗腐蝕能力比AA1050H16 的低,主要是由於(1)陽極皮膜裡含有MgO 與(2)基材內部
    有較多的介在物顆粒的影響。陽極皮膜經由醋酸鎳溶液封孔後, 皮膜內會有Ni(OH)2 的形成, 故其抗腐蝕能力會高於使用熱水封孔。電化拋處理可顯著改善表面粗造度與提高陽極孔洞的排列規律, 但試片表面的殘留層在陽極過程中會形成鋁氯化合物, 因而降低陽極皮膜的抗腐蝕能力。
    經鹽霧試驗後,使用熱水封孔的陽極試片( AA1050H16)其色差值
    會比使用醋酸鎳封孔的高。相反地,當陽極試片( AA5052H32)使用熱水封孔時, 其色差值會比較低。


    Magnesium added in aluminum can increase the strength of
    aluminum alloy. But it also brings about inclusions in the matrix of aluminum alloy to decrease the corrosion resistance. This study used the materials of AA1050H16 and AA5052H32 as base metals to carry out anodization with different anodizing conditions and sealing processes.
    Pre-treatment of electro-chemical polish (ECP) is also concerned and treated as variable to compare its effect on the amorphous anodization film (AAO) quality and corrosion resistance.
    After salt water spraying test, we found that AAO film formed on AA5052H32 surface has a lower corrosion resistance than AA1050H16 that mainly affected by (1) forming MgO in AAO film and (2) high amount of inclusion particle existed in matrix. Experimental results also
    point out that sealing AAO film by using nickel acetate can improve sample’s corrosion resistance due to the existence of nickel hydroxide on AAO film. Pre-treatment of ECP process smoothed the sample’surface and improved the regularity of anodized pore arrangement. The residues on surface tended to interact with oxygen to form complex products during anodization deteriorating the AAO film’s corrosion resistance.
    Anodized samples (AA1050H16) sealed by hot water show a higher color difference than those sealed by nickel acetate solution. Contrarily, anodized samples (AA5052H32) show less degree of color difference after hot water sealing was used.

    中文摘要.......................................................................................... i 英文摘要......................................................................................... ii 目錄............................................................................................... iii 圖目錄............................................................................................. v 表目錄............................................................................................ xi 符號說明....................................................................................... xii 第一章 前言................................................................................. 1 第二章 理論探討與文獻回顧........................................................ 2 2-1 鋁合金( 實驗材料) ........................................................ 2 2-2 陽極處理.......................................................................... 2 2-2-1 基礎介紹................................................................. 2 2-2-2 陽極過程的電壓與時間關係.................................... 5 2-3 陽極處理的分類............................................................... 9 2-3-1 硫酸法.................................................................... 9 2-3-2 草酸法.................................................................... 9 2-3-3 鉻酸法.................................................................. 10 2-4 陽極皮膜的封孔............................................................. 10 2-4-1 熱水封孔................................................................11 2-4-2 鉻酸鹽封孔........................................................... 12 2-4-3 醋酸鎳封孔........................................................... 13 2-4-4 熱水封孔與含醋酸鎳成份溶液封孔差異................ 13 2-5 陽極皮膜檢測................................................................. 15 2-5-1 化學方法............................................................... 15 2-5-2 鹽霧試驗............................................................... 15 2-5-3 電化學方法........................................................... 16 2-5-4 光學檢測............................................................... 18 2-6 腐蝕............................................................................... 19 2-6-1 腐蝕廣泛的意義.................................................... 19 2-6-2 腐蝕的型態........................................................... 19 2-6-3 氯離子的角色........................................................ 21 2-6-4 氯離子腐蝕理論.................................................... 22 2-6-5 陽極皮膜的腐蝕.................................................... 28 第三章 實驗方法與步驟............................................................. 30 3-1 實驗材料與試片準備...................................................... 30 3-2 實驗儀器........................................................................ 30 3-3 試片代號說明................................................................. 31 3-4 實驗步驟........................................................................ 34 第四章 結果與討論.................................................................... 38 4-1 實驗材料的金相觀察...................................................... 38 4-2 陽極參數對陽極皮膜品質影響........................................ 42 4-2-1 電流密度與時間對陽極皮膜厚的影響.................... 42 4-2-2 陽極皮膜的二次離子質譜儀(SIMS)分析................ 43 4-2-3 電流密度對陽極孔洞率的影響............................... 47 4-2-4 電化拋對陽極皮膜品質的討論............................... 52 4-3 鹽霧試驗結果討論.......................................................... 55 4-4 光學CIE L*a*b*結果討論.............................................. 81 第五章 結論............................................................................... 99 參考文獻...................................................................................... 100 附錄一.......................................................................................... 110

    [1] ASM international handbook committee, Aluminum and aluminum
    alloys, ASM International, pp. 20-22, 1993
    [2] N.Taşaltın, S.Öztürk, N.Kılınç, H.Yüzer and Z.Z.Öztürk, “Simple
    fabrication of hexagonally well-ordered AAO template on silicon
    substrate in two dimensions”, Applied Physics A, Vol 95, pp.
    781-787, 2009
    [3] G.E.Thompson, H.Habazaki, K.Shimizu, M.Sakairi, P.Skeldon,
    K.Zhou and G.C.Wood, “Anodizing of aluminium alloys”, Aircraft
    Engineering and Aerospace Technology, Vol 71, pp. 228-238, 1999
    [4] I.Vrublevsky, V.Parkoun, J.Schreckenbach and W.A.Goedel,
    “Dissolution behaviour of the barrier layer of porous oxide films on
    aluminum formed in phosphoric acid studiedby a re-anodizing
    technique”, Applied Surface Science, Vol 252, pp. 5100-5108, 2006
    [5] T.Dimogerontakis and I.T.Kaplanoglou, “The role of aluminum
    anodizing conditions on the effect of the additivelight green”, Thin
    Solid Films, Vol 402, pp. 121-125, 2002
    [6] G.C.Wood, J.P.O’Sullivan and B.Vaszko, “The direct observation of
    barrier layers in porous anodic oxide films”, Journal of the
    Electrochemical Society, Vol 115, No 6, pp. 618-620, 1968
    [7] H.Masuda and F.Hasegwa, “Self-ordering of cell arrangement of
    anodic porous alumina formed in sulfuric acid solution”, Journal of
    the Electrochemical Society, Vol 144, No 5, pp. 127-130, 1997
    [8] 劉志維,「鋁鎂合金陽極處理技術之研發」,國立中央大學, 碩
    士論文, 民國九十一年
    [9] J.A.González, V.López, E.Otero and A.Bautista, “Postsealing
    changes in porous aluminum oxide films obtained in sulfuric acid
    solutions”, Journal of the Electrochemical Society, Vol 147, No 3,
    pp. 984-990, 2000
    [10] S.Feliu, J.Ma, J.Bartolomé and J.A.González, “XPS
    characterization of porous and sealed anodic films on aluminum
    Alloys”, Journal of the Electrochemical Society, Vol 154, No 5, pp.
    241-248, 2007
    [11] M.J.Bartolome´, V.Lo´pez, E.Escudero, G.Caruana and
    J.A.Gonza´lez, “Changes in the specific surface area of porous
    aluminium oxide films during sealing”, Surface and Coatings
    Technology, Vol 200, pp. 4530-4537, 2006
    [12] Y.Goueffon, L.Arurault, C.Mabru, C.Tonon and P.Guigue, “Black
    anodic coatings for space applications study of the process
    parameters, characteristics and mechanical properties”, Journal of
    Materials Processing Technology, Vol 209, pp. 5145-5151, 2009
    [13] X.Zhao, W.Liu, Y.Zuo and L.Yang, “The cracking behaviors of
    anodic films on 1050 and 2024 aluminum alloys after heating up to
    300°C”, Journal of Alloys and Compounds, Vol 479, pp. 473-479,
    2003
    [14] W.Liu, Y.Zuo, S.Chen, X.Zhao and J.Zhao, “The effects of sealing
    on cracking tendency of anodic films on 2024 aluminum alloy after
    heating up to 300°C”, Surface and Coatings Technology, Vol 203,
    pp. 1244-1251, 2004
    [15] I.D. Graeve, H.Terryn and G.E.Thompson, “AC-anodising of aluminium:contribution to electrical and efficiency study”,
    Electrochimica Acta, Vol 52, pp. 1227-1134, 2006
    [16] G.E.Thompson, R.C.Furneaux, G.C.Wood, J.A.Richardson and J.S.
    Goode, “Nucleation and growth of porous anodic films on
    aluminium”, Nature, Vol 272, No 30, pp. 433-435, 1978
    [17] Y.Xu, G.E.Thompson and G.C.Wood, “Mechanism of anodic film
    growth on aluminum”, Transactions of the Institute of Metal
    Finishing, Vol 63, pp. 98-103, 1985
    [18] P.Skeldon, G.E.Thompson, S.J.Garcia-Vergara, L.I.Rubianes and
    C.E.Blanco-Pinzon, “A tracer study of porous anodic alumina”,
    Electrochemical and Solid-State Letters, Vol 9, No 11, pp. 47-51,
    2006
    [19] F.Li, L.Zhang and R.M.Metzger, “On the growth of highly ordered
    pores in anodized aluminum oxide”, Chemistry of Materials, Vol 10,
    pp. 2470-2480, 1998
    [20] K.Wefers, “The mechanism of sealing of anodidc oxide coatings on
    aluminum”, Aluminum, Vol 49, No 8, pp. 553-624, 1973
    [21] S.H.Su, C.S.Li, F.B.Zhang and M.Yokoyama, “Characterization of
    anodic aluminium oxide pores fabricated on aluminium templates”,
    Superlattices and Microstructure, Vol 44, pp. 514-519, 2008
    [22] K.V.Heber, “Studies on porous Al2O3 growth—I. physical model”,
    Electrochimica Acta, Vol 23, pp. 127-133, 1978
    [23] G.Patermarakis, K.Moussoutzanis and J.Chandrinos, “Discovery by
    kinetic studies of the latent physicochemical processes and their
    mechanisms during the growth of porous anodic alumina films in sulfate electrolytes”, Journal of Solid State Electrochemistry, Vol 6,
    pp. 39-54, 2001
    [24] P.S.Wei and T.S.Shih, “Monitoring the progressive development of
    an anodized film on aluminum”, Journal of the Electrochemical
    Society, Vol 154, No 11, pp. 678-683, 2007
    [25] I.Farnan, R.Dupree, A.J.Forty, Y.S.Jeong, G.E.Thompson and G.C.
    Wood, “Structural information about amorphous anodic alumina
    from Al MAS NMR”, Philosophical Magazine Letters, Vol 59, No 4,
    pp. 189-195, 1989
    [26] T.P.Hoar and J.Yahalom, “The initiation of pores in anodic oxide
    films formed on aluminum in acid solutions”, Journal of the
    Electrochemical Society, Vol 110, No 6, pp. 614-621, 1963
    [27] G.C.Wood and J.P.O’Sullivan, “The anodizing of aluminum in
    sulphate solutions”, Electrochimica Acta, Vol 15, pp. 1865-1876,
    1970
    [28] L.E.Fratila-Apachitei, J.Duszczyk and L.Katgerman, “AlSi(Cu)
    anodic oxide layers formed in H2SO4 at low temperature using
    different current waveforms”, Surface and Coatings Technology,
    Vol 165, pp. 232-240, 2003
    [29] I.T.Kaplanoglou, S.Theohari ,T.Dimogerontakis, Y.M.Wang,
    H.H.Kuo and S.Kia, “Effect of alloy types on the anodizing process
    of aluminum”, Surface and Coatings Technology, Vol 200, pp.
    2634-2641, 2006
    [30] G.Patermarakis and H.S.Karayannis, “The mechanism of growth of
    porous anodic Al2O3 films on aluminium at high film thicknesses”,Electrochimica Acta, Vol 40, No 16, pp. 2647-2656, 1995
    [31] M.A.Paez, O.Bustos, G.E.Thompson, P.Skeldon, K.Shimizu and
    G.C.Wood, “Porous anodic film formation on an Al-3.5 wt % Cu
    alloy”, Journal of the Electrochemical Society, Vol 147, No 3, pp.
    1015-1020, 2000
    [32] S.Werick, R.Pinner and P.G.Sheasby, The surface treatment and
    finishing of aluminum and it’s alloys, ASM International , Ohio, pp.
    829, 1987
    [33] L.Hao and B.R.Cheng, “Sealing processes of anodic coatings—past
    present and future”, Metal finishing, Vol 98, pp. 8-18, 2000
    [34] V.López, M.J.Bartolomé, E.Escudero, E.Otero and J.A.González,
    “Comparison by SEM, TEM, and EIS of hydrothermally sealed and
    cold sealed aluminum anodic oxides”, Journal of the
    Electrochemical Society, Vol 153, No 3, pp. 75-82, 2006
    [35] S.Werick, R.Pinner and P.G.Sheasby, The surface treatment and
    finishing of aluminum and it’s alloys, ASM International, Ohio, pp.
    801, 1987
    [36] O.J.Murphy, J.S.Wainright, J.J.Lenczewski, J.H.Gibson and M.W.
    Santana, “Spectroscopic investigations of porous and sealed anodic
    alumina films”, Journal of the Electrochemical Society, Vol 136,
    No 11, pp. 3518-3525, 1989
    [37] L.Hao, “How sealing can enhance the coating performance of
    anodized aluminum”, Light metal age, Vol 59, pp. 12-18, 2001
    [38] A.Dito and F.Tegiacchi, “Cold sealing of anodized aluminum with
    nickel salt solutions”, Plating and Surface Finishing, Vol 72, pp.72-78, 1985
    [39] E.Escudero, V.López, E.Otero, M.J.Bartolomé and J.A.González,
    “Behaviour of anodised aluminium in very long-term atmospheric
    exposure”, Surface and Coatings Technology, Vol 201, pp.
    7303-7309, 2007
    [40] S.Feliu, J.A.Gonza´lez, V.Lo´pez and M.J.Bartolome,
    “Characterisation of porous and barrier layers of anodic oxides on
    different aluminium alloys”, Journal of Applied Electrochemistry,
    Vol 37, pp. 1027-1037, 2007
    [41] J.J.Suay, E.Gimenez, T.Rodriguez, K.Habbib and J.J.Saura,
    “Characterization of anodized and sealed aluminium by EIS”,
    Corrosion Science, Vol 45, pp. 611-624, 2003
    [42] F.Snogan, C.Blanc, G.Mankowski and N.Pebere, “Characterisation
    of sealed anodic films on 7050 T74 and 2214 T6 aluminium alloys”,
    Surface and Coatings Technology, Vol 154, pp. 94-103, 2002
    [43] T.S.Shih, P.S.Wei and Y.S.Huang, “Optical Properties of Anodic
    Aluminum Oxide Films on Al1050 Alloys”, Surface and Coatings
    Technology, Vol 202, pp. 3298-3305, 2008
    [44] N.Tabrizian, H.N.Hansen, P.E.Hansen, R.Ambat and P.Møller,
    “Influence of annealing and deformation on optical properties of
    ultra precision diamond turned and anodized 6060 aluminium
    alloy”, Surface and Coatings Technology, Vol 204, pp. 2632-2638,
    2010
    [45] 柯賢文, 腐蝕及其防制, 全華科技圖書出版社, 頁5, 民國八十
    七年
    [46] E.Gileadi and E.K.Eisner, “Some observations concerning the Tafel
    equation and its relevance to charge transfer in corrosion”,
    Corrosion Science, Vol 47, pp. 3068-3085, 2005
    [47] 柯賢文, 腐蝕及其防制, 全華科技圖書出版社, 頁9, 民國八十
    七年
    [48] 柯賢文, 腐蝕及其防制, 全華科技圖書出版社, 頁134, 民國八
    十七年
    [49] M.G.Fontana, Corrosion engineering, third edition, McGraw-Hill,
    New York, pp. 53-67, 1986
    [50] H.Bohni and H.H.Uhlig, “Environmental Factors Affecting the
    Critical Pitting Potential of Aluminum”, Journal of the
    Electrochemical Society, Vol 116, No 7, pp. 906-910, 1969
    [51] J.M.Kolotyrkin, “Effects of anions on the dissolution kinetics of
    metals”, Journal of the Electrochemical Society, Vol 108, No 3, pp.
    209-216, 1961
    [52] T.P.Hoar and W.R.Jacob, “Breakdown of passivity of stainless steel
    by halide ions”, Nature, Vol 216, pp. 1299-1301, 1967
    [53] T.P.Hoar, “The production and breakdown of the passivity of
    metals”, Corrosion Science, Vol 7, pp. 341-355, 1967
    [54] N.Sato, “A theory for breakdown of anodic oxide films on metals”,
    Electrochimica Acta, Vol 16, pp. 1683-1692, 1971
    [55] L.F.Lin, C.Y.Cho and D.D.Macdonald, “A point defect model for
    anodic passive films”, Journal of the Electrochemical Society, Vol
    128, No 6, pp. 1194-1198, 1981
    [56] 魏百盛, 「鋁合金熱合陽極皮膜與陽極皮膜成長行為之研究」,國立中央大學, 博士論文, 民國九十六年
    [57] J.C.Walmsley, C.J.Simensen, A.BjØrgum, F.Lapique and K.Redford,
    “The structure and impurities of hard DC anodic Layers on AA6060
    aluminium alloy”, The Journal of Adhesion, Vol 84, pp. 543-561,
    2008
    [58] F.Lockwood, S.Lee and J.Faunce, “Pitting corrosion of 5052
    aluminum alloy”, Application of Surface Science, Vol 20, pp.
    339-346, 1985
    [59] H.Ezuber, A.E.Houd and F.E.Shawesh, “A study on the corrosion
    behavior of aluminum alloys in seawater”, Materials and Design,
    Vol 29, pp. 801-805, 2008
    [60] M.Trueba and P.S.Trasatti, “Study of Al alloy corrosion in neutral
    NaCl by the pitting scan technique”, Materials Chemistry and
    Physics, Vol 121, pp. 523-533, 2010
    [61] J.J.Ren and Y.Zuo, “The growth mechanism of pits in NaCl solution
    under anodic films on aluminum”, Surface and Coatings
    Technology, Vol 191, pp. 311-316, 2005
    [62] V.Moutarlier, M.P.Gigandet and J.Pagetti, “Characterisation of
    pitting corrosion in sealed anodic films formed in sulphuric
    sulphuric molybdate and chromic media”, Applied Surface Science,
    Vol 206, pp. 237-249, 2003
    [63] Y.Zuo, P.H.Zhao and J.M.Zhao, “The influences of sealing methods
    on corrosion behavior of anodized aluminum alloys in NaCl
    solutions”, Surface and Coatings Technology, Vol 166, pp. 237-242,
    2003
    [64] N.Voevodin, C.Jeffcoate, L.Simon, M.Khobaib and M.Donley,
    “Characterization of pitting corrosion in bare and sol–gel coated
    aluminum 2024-T3 alloy”, Surface and Coatings Technology, Vol
    140, pp. 29-34, 2001
    [65] Ginés, Color model and color wheels, 取自
    http://personales.upv.es/gbenet/teoria%20del%20color/water_color/
    color6.html#LAB1, 2001
    [66] R.S.Alwitt, J.Xu and R.C.M.Clung, “Stresses in sulfuric acid
    anodized coatings on aluminum”, Journal of the Electrochemical
    Society, Vol 140, No 5, pp. 1241-1246, 1993
    [67] K.Shimizu, H.Habazaki, P.Skeldon, G.E.Thompson and G.C.Wood,
    “GDOES depth profiling analysis of a thin surface film on
    aluminium”, Surface and Interface Analysis, Vol 27, pp. 998-1002,
    1999
    [68] L.Li , S.H.Chen, X.G.Yang ,C.Wang and W.J.Guo, “Pitting corrosion
    induced current oscillations during electrodissolution of Al in HClO4
    solutions”, Journal of Electro-analytical Chemistry, Vol 572, pp.
    41-49, 2004
    [69] K.Shimizu, H.Habazaki, P.Skeldon, G.E.Thompson and G.C.Wood,
    “Migration of oxalate ions in anodic alumina”, Electrochimica Acta,
    Vol 46, pp. 4379-4382, 2001
    [70] S.I.Pyun, S.M.Moon, S.H.Ahn and S.S.Kim, “Effects of Cl-, NO3
    - and
    SO4
    2- ions on anodic dissolution of pure aluminum in alkaline
    solution”, Corrosion Science, Vol 41, pp. 653-667, 1999
    [71] K.S.Rao and K.P.Rao, “Pitting corrosion of heat-treatable aluminum
    alloys and welds: a review”, Trasactions of the Indian Institute of
    Metals, Vol 57, pp. 593-610, 2004
    [72] Z.S.Smialowska, “Pitting corrosion of aluminum”, Corrosion Science,
    Vol 41, pp. 1743-1767, 1999
    [73] Z.Ahmad, A.U.Hamid and B.J.A.Aleem, “The corrosion behavior of
    scandium alloyed Al 5052 in neutral sodium chloride solution”,
    Corrosion Science, Vol 43, pp. 1227-1243, 2001

    QR CODE
    :::