跳到主要內容

簡易檢索 / 詳目顯示

研究生: 洪明德
Ming-Te Hong
論文名稱: 扭矩作用下之高強度中空鋼骨鋼筋混凝土耐震行為研究
指導教授: 許協隆
Hsieh-Lung Hsu
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
畢業學年度: 96
語文別: 中文
論文頁數: 123
相關次數: 點閱:7下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究針對應用斜拉鋼筋於高強度中空複合構材之行為,進行一系列實驗研究探討,藉由16根配置不同斜拉鋼筋試體承受純扭矩以及固定軸力與不同組合反覆載重之試驗,探討斜拉鋼筋對構件極限強度、破壞模式、韌性容量、勁度衰減與能量消散行為之影響。研究結果顯示,含斜拉鋼筋之構件在偏心載重作用下,其勁度高於未加斜拉鋼筋之構件,適當配置斜拉鋼筋構件之強度、韌性以及能量消散能力均較未配置者為佳,斜拉鋼筋不僅對構材核心混凝土圍束效果有相當之助益,其對構材之扭轉撓曲效能亦可有效提昇,上述結果顯示,應用斜拉鋼筋於中空複合構材設計,具有相當之可行性。


    This study focuses on the torsional behavior of hollow composite members composed of encased steel tubes and high-strength reinforced concrete with inclined bars. A series tests of different composite section disposition with inclined bars subjected to different combination cyclic loadings, research the behavior of the inclined bars to the member’s ultimate strength, failure pattern, ductility , stiffness reduction and energy dissipation. Test results showed that the stiffness of members with inclined bars were significantly increased when subjected to torsion and combined loading coupled with torsion, the suitable design inclined bars make member’s strength , ductility and energy dissipation better.

    目錄I 表目錄IV 圖目錄V 照片目錄IX 第一章 緒論1 1.1 前言1 1.2 研究動機與目的1 1.3 研究方向與內容3 第二章 文獻回顧4 2.1 國內外相關研究4 2.2 國內外SRC相關規範概述6 2.2.1 美國ACI設計規範6 2.2.2 美國AISC設計規範7 2.2.3 日本AIJ設計規範7 2.2.4 我國SRC構造設計規範8 第三章 相關理論10 3.1 彎矩強度計算10 3.1.1 降伏彎矩強度10 3.1.2 極限彎矩強度14 3.2 扭矩強度計算15 3.2.1 鋼管扭矩強度 15 3.2.2 鋼筋混凝土扭矩強度17 3.2.3 斜拉鋼筋抗扭強度19 第四章 實驗規劃與過程21 4.1 實驗規劃與參數21 4.1.1 實驗規劃21 4.1.2 試體編號與試驗參數22 4.2 試體製作23 4.3 實驗設備24 4.4 實驗方法與流程25 第五章 實驗觀察與結果分析28 5.1 實驗觀察28 5.1.1 彎矩實驗28 5.1.2 扭矩實驗31 5.1.3 偏心載重實驗(e/h=0.25)33 5.1.4 偏心載重實驗(e/h=0.5)35 5.2 實驗結果分析38 5.2.1 破壞模式38 5.2.2 等效勁度41 5.2.3 極限強度44 5.2.4 勁度衰減46 5.2.5 韌性47 第六章 結論與建議50 6.1 結論50 6.2 建議51 參考文獻52

    [1]American Concrete Institute (ACI)., Buildings Code Requirements for Structural Concrete (ACI 318-02) and Commentary (ACI 318R-02). Farmington Hills, Michigan (2002).
    [2]Tsonos, A. G., Tegos, I. A., and Penelis, G. Gr., “Seismic Resistance of type 2 Exterior Beam-Column Joints Reinforced with Inclined Bars”, ACI Structural Journal, Vol. 89, No. 1, pp. 3-12 (1992).
    [3]Galano, L. , and Vignoli, A., ”Seismic Behavior of Short Coupling Beams with Different Reinforcement Layouts”, ACI Structural Journal, Vol. 97, No. 6, pp. 876-885 (2000).
    [4]Zahn, F. A., and Park, R., and Priestley, M. J. N., “Flexural Strength and Ductility of Circular Hollow Reinforced Concrete Columns without Confinement on Inside Face”, ACI Structural Journal, Vol. 87, No. 2, pp. 156-166 (1990).
    [5]Mo, Y. L., Jeng, C. H., and Chang, Y. S., “Torsional Behavior of Prestressed Concrete Box-Girder Bridges with Corrugated Steel Webs”, ACI Structural Journal, Vol. 97, No. 6, pp. 849-859 (2000).
    [6]Koutchoukali, N. E., and Belarbi, A., “Torsion of High-Strength Reinforced Concrete Beams and Minimum Reinforcement Requirement”, ACI Structural Journal, Vol. 98, No. 4, pp. 462-469 (2001).
    [7]Xiao, Y., and Yun, H. W., “Experimental Studies on Full-Scale High-Strength Concrete Columns”, ACI Structural Journal, Vol. 99, No. 2, pp. 199-207 (2002).
    [8]American Institute of Steel Construction (AISC)., Load and Resistance Factor Design Specification for Structural Steel Buildings, Chicago (1999).
    [9]Architectural Institute of Japan (AIJ)., Standards for Structural Calculation of Steel Reinforced Concrete Structures, Tokyo (1993).
    [10]Kumar, s., and Usami, T., ”Damage Evaluation in Steel Box Columns by Cyclic Loading Tests”, Journal of Structural Engineering-ASCE, Vol. 122, No. 6, pp. 626-633 (1996).
    [11]Hsu, H. L., Hsieh, J. C., and Juang, J. L., “Seismic Performance of Steel-Encased Composite Members with Strengthening Cross-Inclined Bars”, Journal of Constructional Steel Research, Vol. 60, pp. 1663-1679 (2004).
    [12]Hsu, H. L., and Liang, L. L., “Performance of Hollow Composite Members Subjected to Cyclic Eccentric Loading”, Earthquake Engineering and Structural Dynamics, Vol. 32, pp. 443-461 (2003).
    [13]Hsu, H. L., and Wang, C. L., ”Flexural-Torsional Behaviour of Steel Reinforced Concrete Members Subjected to Repeated Loading”, Earthquake Engineering and Structural Dynamics, Vol. 29, pp. 667-682 (2000).
    [14]Kumar, S., and Usami, T., “Damage Evaluation in Steel Box Columns by Cyclic Loading Tests”, Journal of Structural Engineering-ASCE, Vol. 122, No. 6, pp. 626-633 (1996).
    [15]Usami, T.,and Ge, H., “Ductility of Concrete-Filled Steel Box Columns under Cyclic Loading”, Journal of Structural Engineering-ASCE, Vol. 120, No. 7, pp. 2021-2040 (1994).
    [16]Bayrak, O., and Sheikh, S. A., “Confinement Reinforcement Design Consideration for Ductile HSC Column”, Journal of Structural Engineering-ASCE, Vol. 124, No. 9, pp. 999-1010 (1998).
    [17]Saatcioglu, M., and Razvi, S. R., “High-Strength Concrete with Square Section under Concentric Compression”, Journal of Structural Engineering-ASCE, Vol. 124, No. 12, pp. 1438-1444 (1998).
    [18]羅凱騰,「高強度中空複合構材之扭轉撓曲行為研究」,碩士論文,國立中央大學土木工程研究所,中壢市 (2007)。
    [19]內政部營建署,鋼骨鋼筋混凝土構造設計規範與解說,台北市 (2004)。
    [20]粘逸尊,「高強度混凝土中空矩行橋柱之耐震行為」,碩士論文,國立成功大學土木工程研究所,台南市 (1998)。
    [21]丁煒宏,「高強度混凝土柱韌性行為之研究」,碩士論文,國立台灣大學土木工程研究所,台北市 (2001)。
    [22]姚詩豪,「中空矩形橋柱之抗彎行為」,碩士論文,國立成功大學土木工程研究所,台南市 (1997)。
    [23]王暉舜,「鋼梁與包覆箱型鋼柱接合之梁柱接頭耐震試驗」,碩士論文,國立交通大學土木工程研究所,新竹市 (2004)。

    QR CODE
    :::