跳到主要內容

簡易檢索 / 詳目顯示

研究生: 克麗絲汀
Christina Rahayuningtyas
論文名稱: 結合地下出流預測改良AVSWAT模式流量模擬-以印尼Lesti河流流域為例
Improving AVSWAT Streamflow Simulation by Cooperating Groundwater Recharge Prediction in Upstream Lesti Watershed, East Java, Indonesia
指導教授: 吳瑞賢
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 英文
論文頁數: 123
中文關鍵詞: AVSWAT地下水出流量推估地下水位波動集水區流量
外文關鍵詞: AVSWAT, Groundwater Prediction, Water Table Fluctuation, Streamflow
相關次數: 點閱:13下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • Lesti集水區位於印及爪哇島東部,面積為380平方公里。Lesti集水區流量為下游水資源需求之主要來源,然而集水區常受當地降雨之高度時間與空間變異性影響,流量呈現劇烈之年間變化,嚴重影響下游水資源之供應穩定度。有鑑於此,本研究嘗試提升上游集水區水文狀況之掌握程度,以增加下游水資源供應之效率與穩定程度。 本研究利用Lesti上游集水區之地下水位位線波動推估集水區之地下水出流量,並結合
    AVSWAT ( Arc View Soil Water Assesment Tool)模式得到集水區之出流量。地下水位線波動是由Lesti集水區中4水井所測得,可獲得季節與年際之地下水位波動情形,用以推估集水區地下水出流量。而集水區中水井觀測資料顯示,2007年年際變化幅度為2800mm至5700mm,2008年變化幅度為3900mm至4700mm,2009年變化幅度為3200mm至5100mm,2010年變化幅度為2800mm至4600mm。而根據以上觀測結果,2007年之地下水出流推估量為736 mm,2008年之地下水出流推估量為820,9 mm,2009年地下水出流推估量為786,7 mm,2010年地下水出流推估量為306,4 mm,相關係數R-square大於0.7。而在本研究中2007年至2010年中Dv(%)則維持在23.32%-55.3%之間。


    Upstream Lesti Watershed is one of the major watershed of East Java of Indonesia and it covers about 380,93 Ha. The basin has enough water resources to meet current demands but there are many challenges including high spatial and temporal variability in precipitation during one year. Good understanding of the water condition is very necessary to know the effect on streamflow of the Lesti river in each sub basin.
    This study investigated the contribution of sustainable management water resources in the Upstream Lesti Watershed by prediction the recharge of groundwater using water table fluctuation especially in dry season which can cooperating with the performance of the AVSWAT program ( Arc View Soil Water Assesment Tool) model by comparing observed streamflows with simulated streamflows at outlet.
    The water table fluctuation method from 4 well was used in the Upstream Lesti Watershed to evaluate the seasonal and annual variations in water level rise and to estimate the groundwater prediction (deep aquifer). The results show that annual water level rise with a range of 2800 mm - 5700 mm in 2007; 3900 mm - 4700 mm in 2008; 3200 mm – 5100 mm in 2009, and 2800 mm – 4600 mm in 2010. Based on standard values of specific yield and the measured water level rise, the prediction from area weighted that occur in sub basin 39 outlets in 2007 amounted to 736 mm; in 2008, amounted to 820,9 mm; in 2009 amounted to 786,7 mm, and the lowest was in 2010 are equal to 306,4 mm. Also, the correlation coefficient has a direct positive relationship range 0,7 < R <1 in the while Dv (%) in this study the smaller values of Dv were satisfied with the range of 23.32% - 55.3% in 2007 - 2010.

    Abstract i Chinese Abstract ii Acknowledgements iii Table of Contents iv List of Tables vii List of Figures ix Chapter 1 Introduction 1 1.1 Background 1 1.2 Problem Identification 2 1.3 The Research Problem 3 1.4 The Aim and Benefit of Research 3 Chapter 2 Literature Review 5 2.1 Precipitation 5 2.1.1 Rain Station 5 2.1.2 Consistency Test Rainfall Data With Double Mass Curve 5 2.1.3 Regression Testing and Analysis of Hydrological Data Correlation 6 2.2 Geographic Information Systems (GIS) 8 2.2.1 Definition of GIS 8 2.2.2 Data Structures 8 2.3 AVSWAT 2000 (Arc View Soil and Water Assessment Tool) 9 2.3.1 Component AVSWAT 2000 11 2.3.2 Hydrological Data Input to AVSWAT 2000 12 2.3.3 Simulation Result AVSWAT 2000 16 2.4 Groundwater recharge 17 2.4.1 Groundwater in AVSWAT model 19 2.5 Estimation of Water Level Rise ( ∆h) 21 2.6 Specific Yield 22 Chapter 3 Study Area 24 3.1 The Location of Case Study 24 3.2 Study Area Conditions 25 3.2.1 Climate 25 3.2.2 Topography Condition 26 3.2.3 Land Use Condition 26 3.2.4 Soil Type Condition 27 3.2.5 Hydrology Condition 28 Chapter 4 Methodology 29 4.1 Systematics Work Study 29 4.1.1 Data Collection Methods 29 4.1.2 Troubleshooting Steps Study 30 4.1.3 Analysis of the Results 34 Chapter 5 Result and Discussion 36 5.1 Determination Watershed Boundary 36 5.2 Rainfall Data 39 5.2.1 Mass Double Curve 41 5.2.2 Rainfall Data for Input AVSWAT 46 5.2.3 Landuse and Soil Type 51 5.2.4 Input Proceessing for Landuse and Soil Type 53 5.3 HRU Proceessing (Hydrologic Response Unit) 56 5.4 Weather Station Data Proceessing 57 5.5 AVSWAT Running Simulation 58 5.6 The Result Simulation Before Calibration 60 5.7 Calibration Parameter in AVSWAT 2000 72 5.8 Water Table Fluctuation for Groundwater Recharge 75 5.8.1 Well Observed 76 5.8.2 Water Level Measurement 77 5.9 Water level rise 77 5.10 Groundwater Recharge Prediction 83 5.11 Percolation Deep Aquifer Analysis 88 5.12 Consistency Test The Result 92 5.12.1 Correlation Coefficient (R) 92 5.12.2 Deviation of runoff volumes (Dv) 95 Chapter 6 Conclusions 96 6.1 Conclusion 96 6.2 Recommendation 98 References 99 Appendix A 104

    Alansi, A.W., Amin, M.S.M., Halim, Abdul G, Shafri, H.Z.M., Aimrun, W, 2009. Validation of SWAT model for streamflow simulation and forecasting in Upper Bernam humid tropical river basin, Malaysia. Hydrology and Earth System Sciences Discussions, 7582-7609.
    Amabile, G.G. Vazguez., Engel, B.A., 2005. Use of SWAT to compute groundwater table depth and streamflow in the Muscatatuck River Watershed. American Society of Agricultural Engineers, vol 48(3) : 991 – 1003.
    Arnold, J.G., Allen, P., Bernhardt, G., 1993. A comprehensive surface groundwater flow model. Journal Hydrology, 142:47-69.
    Arnold, J.G., Allen, P.M., 1996. Estimating hydrologic budgets for three Illinois watersheds. Journal of Hydrology, 176: 57 -77.
    Aronoff, S., 1993. Geographic Information Systems. A Management Perspective. Ottawa, Canada : WDL.
    Chand, R., Hodlur, G.K., Prakash, M.R., Mondal, N.C., Singh, V.S., 2005. Reliable natural recharge estimates in granitic terrain. Current Science, 88 (5).
    Chang, Kang-Tsung., 2012. Introduction to Geographic Information System. Singapore : Mc Graw Hill Publishing Company Ltd.
    Chekol, Dilnesaw A., Tischbein Bernhard, Eggers Helmut, Vlek Paul, 2007. Application of SWAT for assesment of spatial distribution of water resources and analyzing impact of different land management practices on soil erosion in Upper Awash River Basin watershed. Catchment and lake research LARS, 110 - 117.
    Delin, G.N., Healy, R.W., Lorenz, D.L., Nimmo, J.R., 2006. Comparison of local- to regional-scale estimates of ground-water rechar ge in Minnesota, USA. Journal of Hydrology, vol 334, issues 1- 2: 231-249.
    Du, Jinkang., Rui, Hanyi., Zuo, Tianhui., Li, Qian., Zheng, Dapeng., Chen, Ailing., Xu, Youpeng., Xu, C.-Y., 2013. Hydrological simulation by SWAT model with fixed and varied parameterization approaches under land use change. Water Resouces Manage, DOI 10.1007/s11269-013-0317-0.
    Eckhardt, K., 2008. A comparison of baseflow indicates which were calculated with seven different baseflow separation methods. Journal of Hydrology, 353 : 168-173.
    Foster, S.S.D., 1988. Quantification of groundwater recharge in arid regions : A practical view for resource development.
    Getachew, Haile E., Melesse, Assefa M., 2012. The impact of land use change on hydrology of the Angereb Watershed, Ethiopia. International journal of water sciences vol 1. DOI 10.5772/56266.
    Gupta, B.L., Gupta, A., 1999. Engineering hydrology. Standard publishers distributors. Delhi. 380pp.
    Hall, D.W., Risser, D.W., 1993. Effects of agricultural nutrient management on nitrogen fate and transport in Lancaster County , Pennsylvania. Water Resource Bulletin, 29: 55–76
    Healy, R.W., Cook, P.G., 2002. Using groundwater levels to estimate recharge. Hydrogeology Journal, 10:91-109. DOI 10.1007/s10040-001-0178-0.
    Henry, J.H.,2005. Impacts of Recharge Estim ation on Groundwater Modeling for Arid Basins. Master Thesis. Departement of Geology, Baylor University.

    Indonesain Map.
    http://koleksi-foto-gambar.blogspot.tw/2010/11/peta-indonesia-raya.html
    Jha, Manoj., 2009. Hydrologic simulations of the Maquoketa River Watershed using SWAT, Working Paper 09-WP 499 : 1 – 23.
    Jie, Zhang., Heyden, J.V., Bendel, David., Barthel, Roland., 2011. Combination of soil-water balance models and water-table fluctuation methods for evaluation and improvement of groundwater recharge calculations. Hydrogeology Journal, 19: 1487–1502.
    Kim, N.W., Chung I.M., Wong, Y.S., Arnold, J.G., 2008. Development and application of the integrated SWAT–MODFLOW model. Journal of Hydrology, 356: 1– 16.
    Lerner, D.N., Issar, A.S., Simmers, I., 1990. Groundwater recharge. A guide to understanding and estimating natural recharge. International contributions to hydrogeology. Verlag Heinz. 8.
    Luo, Y., Arnold, J., Allen, P., Chen, X., 2012. Baseflow simulation using SWAT model in an inland river basin in Tianshan Mountains Northwest China. Hydrology and Earth System Sciences, 16 : 1259-1267.
    M. Di Luzio, R. Srinivasan, J. G. Arnold, S. L. Neitsch. 2002. Arc View Interface for SWAT 2000 : User’s Guide. Grassland, Soil and Water Research Laboratory. USDA Agricultural Research Service. Temple, Texas. Blackland Research and Extention Center. Texas Agricultural Experiment Station. Temple, Texas. Published 2002 by Texas Water Resources Institute, Collage Station, Texas.
    Meinzer, O.E., 1923. The occurrence of groundwater in the United States with a discussion of principles. US Ge ol. Surv Water-Supply Pap 489, 321 pp.
    Nachabe, M.H., 2002. Analytical expressions for transient specific yield and shallow water table drainage, Water Resour. Res., 38(10), 1193. DOI: 10.1029/2001WR001071.
    Nemec, Jaromir., 1973. Engineering Hydrology. New Delhi : Tata Mc Graw Hill Publishing Company Ltd.
    Peterson, J.R., Hamlet, J.M., 1998. Hydrologic calibration of the SWAT model in a Watershed containing fragipan soils, Journal. Am Water Resources Assoc, 34:531-544.
    Phomcha, P., Wirojanagud, P., Vangpaisal, T., Thaveevouthi, T., 2011. Suitability of SWAT model for simulating of monthly streamflow in Lam Sonthi Watershed. The Journal of Industrial Technology, vol 7, 2: 49 – 56.
    Principe, J.A., 2012. Exploring climate change effects on watershed sediment yield and land cover mitigation measure using SWAT model, RS and GIS case of Cagayan River Basin, Philippines. International Archives of Photogrammetry Remote Sensing and Spatial Information Sciences, vol XXXIX, B8 : 193 - 198
    Rao, Mahesh., Yang, Zhiming., 2010. Groundwater impacts due to conversation reserve program in Texas County Oklahoma, Applied Hydrology, 30: 317 - 328
    Raposo, J.R., Dafonte, J., Molinero, J., 2013. Assessing the impact of future climate change on groundwater recharge in Galicia Costa Spain. Hydrogeology Journal, 21: 459 – 479.
    Reungsang, P., Kanwar, R.S., Srisuk, K., 2010. Application of SWAT model in simulating steamflow for Chi River Subbasin II in Northeast Thailand. Trends Research in Science and Technology, 1 : 23-28.
    S. L. Neitch, J. G. Arnold, J. R. Kiniry, J. R. William, K. W. King. 2002. Soil and Water Assesment Tool Theoretical Documentation version 2000. Grassland, Soil and Water Research Laboratory. Agricultural Research Service. Temple, Texas. Blackland Reseach Center. Texas Agricultural Experiment Station. Temple, Texas. Published 2002 by Texas Water Resources Institute, College Station, Texas.
    Sathian, K.K., Syamala, P., 2010. Application of GIS integrated SWAT model for basin level water balance. Department of Land & Water Resources, Kelappaji College of Agricultural Engineering & Technology, Tavanur.
    Scanlon, B.R., Healy, R.W., Cook, P.G., 2002. Choosing appropriate techniques for quantifying groundwater recharge. Hydrogeology Journal, 10:18-39. DOI 10.1007/s10040-0010176-2.
    Sharma, M.L., 1989. Groundwater recharge. Balkema, Rotterdam, 323pp.
    Storm, B., 1988. Modeling of saturated flow and the coupling of surface and subsurface flow. In: D.S. Bowles and P. E. O’ Connell (eds). Recent Advances in the Modeling of hydrologic systems, 185-2003.
    Tarboton, D.G., 2000. Distributed modeling in Hydrology using digital data and geographic information system. Utah State University, http://www.engineeringusu.edu/dtarb/
    USGS, 2013. Water table fluctuation method. http://water.usgs.gov/ogw/gwrp/methods/wtf/estimating_graphical.html
    Yan, Yang., Guoqiang, Wang., Jingshan, Y.U., 2010. Groundwater depth simulation based on Beijing County level SWAT application tool. Water and Sediment Sciences, 309 – 317.

    QR CODE
    :::