跳到主要內容

簡易檢索 / 詳目顯示

研究生: 梁虔碩
Chieh-shuo Liang
論文名稱: AlGaAs/GaAs PIN/HBT 光檢器/轉阻放大器之積體化光接收器
指導教授: 辛裕明
Yue-Ming Hsin
口試委員:
學位類別: 碩士
Master
系所名稱: 資訊電機學院 - 電機工程學系
Department of Electrical Engineering
畢業學年度: 89
語文別: 中文
論文頁數: 98
中文關鍵詞: 光接收器光檢器轉阻放大器異質接面雙極性電晶體光二極體
外文關鍵詞: PIN, HBT, photoreceiver, transimpedance amplifier
相關次數: 點閱:19下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

  • 在PIN光二極體的部份考慮到降低接面電容與耦光難易二部份,選擇了適當的元件佈局。在這樣的考量下得到量子效率η=43%,光響應度R= 0.3 A/W。並利S參數的量測和HP-ADS軟體的模擬萃取了PIN光二極體的小訊號模型。並依照小訊號模型的結果選擇-5V作為PIN光二極體的偏壓。
    在異質接面雙極性電晶體的部分,本論文中製作了射極面積為3x12μm2和4x12μm2二種尺寸的元件。在相同的電流密度下進行量測得到AE=3x12μm2的AlGaAs/GaAs HBT,fT為28GHz,fmax為16.25GHz。AE=4x12μm2的AlGaAs/GaAs HBT,fT為24.51GHz,fmax為13.45GHz。
    論文最後利用前面章節所萃取的元件模型進行了電路的模擬,再依模擬的結果設計了光罩並完成2.5 Gb/s積體化光接收器的製作。轉阻放大器電路低頻增益值為44dBΩ(159Ω),電路的f3dB為3.65GHz。


    第一章 導論……………………………………………………………..1 第二章 積體化光接收器設計原理與製程……………………………..4 2.1 積體化光接收器架構簡介………………………………...4 2.2 積體化光接收器製程……………………………………...6 2.3 積體化光接收器設計流程……………………………….20 第三章AlGaAs/GaAs HBT 特性量測與分析.………………………..28 3.1 異質接面雙極性電晶體元件佈局考量…………………28 3.2 直流特性量測……………………………………………30 3.3 高頻特性分析……………………………………………37 3.4 Gummel poon 模型參數萃取.…………………………...40 3.4.1 Gummel plot的量測與參數萃取………….………40 3.4.2量測元件共射極輸出特性曲線……………….…..42 3.4.3量測異質接面雙極性電晶體集、射極電阻值…...42 3.4.4 高頻量測的校準…………………………………..44 3.4.5 接面電容的量測…………………………………..45 3.4.6 定偏壓點與變動偏壓點S參數量測……………..46 第四章 PIN光二極體特性量測與分析……………………………….50 4.1PIN光二極體照光特性量測與分析…..…..………………50 4.1.1 PIN 光二極體佈局考量…………………………….50 4.1.2 PIN光二極體照光特性量測………………………..52 4.2 PIN光二極體小訊號模型………………………………...57 4.2.1 PIN光二極體高頻量測……………………………..57 4.2.2 PIN光二極體小訊號模型建立……………………..59 第五章 1.25Gb/s積體化光接收器設計……………………………….67 5.1光接收器電路設計………………………………………..67 5.1.1 轉阻放大器直流電路模擬…………………………69 5.1.2 轉阻放大器高頻電路模擬…………………………71 5.1.3 PIN/HBT積體化光接收器的等效電路模擬…….75 5.2轉阻放大器特性量測……………………………………80 5.2.1 薄膜電阻Cr …………………..……….…………80 5.2.2 轉阻放大器特性量測……….……………………83 5.3積體化光接收器特性量測……………………………….89 5.3.1 TO-can封裝………………………………………..90 5.3.2 積體化光接收器高頻量測…………….….………92 5.4 結果整理與討論………………………………………...92 第六章 結論……………………………………………………………94 參考文獻………………………………………………………………..96

    [ 1 ]Kyounghoon Yang,Augusto L.Gutierrez-Aitken, Xiangkun Zhang, Member,IEEE, George I. Haddan, Fellow, IEEE, and Pallab Bhattacharya, Fellow, IEEE “Design, modeling, and characterization of monolithically integrated InP-Based(1.55μm) high-speed (24 Gb/s) p-i-n/HBT frond-end photoreceivers”J.Lightwave Technol., vol. 14 ,pp. 1831-1838, 1996.
    [ 2 ]J. E. Bowers snd C. A. Burrus, Jr, “Ultrawide-band long-wavelength p-i-n photodetectors,”J.Lightwave Technol., vol. 5, pp. 1339-1350, 1987.
    [ 3 ]R. Li, Member,IEEE, J. D. Schaub, Member, IEEE, S. M Csutak, and J. C.Campbell, Fellow, IEEE “A High-speed monolithic silicon photoreceiver fabricated on SOI” IEEE Photon. Technol. Lett., vol. 12, pp.1046-1048, 2000.
    [ 4 ]J. Cowls, A. L. Gutierrez-Aitken, P Bhattacharya, and G. I. Haddad,”7.1 GHz bandwidth monolithically integrated InGaAs/InAlAs PIN-HBT transimpedance photoreceiver” IEEE Photon. Technol. Lett., vol. 6, pp963-965, 1994.
    [ 5 ]S.Chandrasekhar,B. C. Johnson, M. Bonnemason, E Tokumitsu, A. H. Gnauck, A. G. Dentai, C. H. Joyner, J. S Perino, G. J. Qua, and E. M. Monberg”An InP/InGaAs p-i-n/HBT monolithic transimpedance photoreceiver” IEEE Photon. Technol. Lett., vol. 2, pp. 505-506, 1990.
    [ 6 ]James J. Morikuni, student Member, IEEE and Sung-Mo Kang, Fellow, IEEE”An analysis of inductive peaking in photoreceiver design” J.Lightwave Technol., vol. 10, pp. 1426-1437, 1992.
    [ 7 ]J. J. Brown, D. C. W. LO,J. T. Gardner, Y. k. Chung, C. D. LEE, and Stephen R. Forrest, Senior Member, IEEE”InGaAs junction field-effect transistors as tunable feedback resistors for integrated receiver preamplifiers” IEEE Electorn Device Letters, vol. 10, pp. 588-590, 1989.
    [ 8 ]Moon Jung Kim, Dae Keun Kim, Sung June Kim, and Mukunda B. Das, Senior Member, IEEE ”Determination of bit-rate and sensitivity limits of an optimized p-i-n/HBT OEIC receiver using simulations”IEEE Transactions on Electron Devices, vol. 44, pp. 551-557, 1997.
    [ 9 ]J. S. Rieh, D. Klotzkin, O. Qasaimeh, L. H. Lu, K. Yang, L. P. B. Katehi, Fellow, IEEE, P. Bhattacharya, Fellow, IEEE, and E. T. Croke”Monolithically integrated SiGe-Si PIN-HBT front-end photoreceivers” IEEE Photon. Technol. Lett., vol. 10, pp. 415-417, 1998.
    [ 10 ]A. L. Gutierrez-Aitken, K. Yang, X. Zhang, G. I. Haddad, Fellow, IEEE, P. Bhattacharya, Fellow, IEEE, and L. M. Lunardi, Member, IEEE”16-GHz bandwidth InAlAs-InGaAs monolithically inteqrated p-i-n/HBT photoreceiver” IEEE Photon. Technol. Lett., vol. 7, pp.1339-1341, 1995.
    [ 11 ]Martin Bitter, Raimond Bauknecht, Werner Hunziker, and Hans Melchior, Fellow, IEEE”Monolithic InGaAs-InP p-i-n/HBT 40-Gb/s optical receiver module” IEEE Photon. Technol. Lett., vol. 12, pp. 415-417, 2000.
    [ 12 ]M. Govindarajan, and S. R. Forrest”Design consideration for Wide band p-i-n/HBT monolithically transimpedence optical photoreceiver” J.Lightwave Technol., vol. 11 ,pp. 367-378, 1993.
    [ 13 ] Sano, E.; Yoneyama, M.; Nakajima, H.; Matsuoka, Y.” A monolithically integrated photoreceiver compatible with InP/InGaAs HBT fabrication process” J.Lightwave Technol., vol. 12, pp. 638-643, 1994.
    [ 14 ] Chandrasekhar, S.; Dentai, A.G.; Joyner, C.H.; Johnson, B.C.; Gnauck, A.H.; Qua, G.J.” 4 Gbit/s pin/HBT monolithic photoreceiver” Electronics Letters , vol. 26.pp. 1880—1882, 1990.
    [ 15 ]范振中, “磷化銦鎵/砷化鎵異質接面雙極性電晶體之研製及其集極調變對元件特性的影響” 碩士論文,國立中央大學,民國89年。
    [ 16 ]楊欣諭,”數據通訊用PIN diode之高速特性” 碩士論文,國立交通大學,民國89年。

    QR CODE
    :::