| 研究生: |
張闊顯 Kuoh-Shean Chang |
|---|---|
| 論文名稱: |
鄰近國家嚴重核事故之大氣長程輸送對台灣的影響評估 The atmospheric long range transport of severe nuclear accident to assess its impact on Taiwan |
| 指導教授: |
林能暉
Neng-Huei Lin |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
地球科學學院 - 大氣物理研究所 Graduate Institute of Atmospheric Physics |
| 畢業學年度: | 91 |
| 語文別: | 中文 |
| 論文頁數: | 269 |
| 中文關鍵詞: | 大氣傳送模式 、軌跡分析 、輻射塵 |
| 外文關鍵詞: | atmospheric transport model, radioactive dust, trajectory analysis |
| 相關次數: | 點閱:17 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究旨在應用大氣傳送模式模擬輻射塵在大氣中的傳送行為與分布情形及對台灣之影響評估。吾人針對東亞國家核電廠進行2000年之氣流軌跡模擬,結果顯示中國廣東大亞灣核電廠與上海秦山核電廠氣流較易影響台灣,到達台灣機率為7 – 12%,到達台灣時間為46小時左右;韓國與日本南部之核電廠,氣流到達台灣之機率為10%,平均到達台灣之時間約為72小時。由季節頻率分布結果顯示中國南方核電廠與中國北方、韓國、日本等核電廠氣流影響台灣分別集中在春夏季與秋冬季,亞洲季風是主宰大氣擴散之主因。
透過模擬車諾比爾核電廠事故確立模式適用性之後,再經由模式參數敏感度測試,發現除了雲下清除係數無明顯變化之外,其餘參數設定會導致模擬結果有顯著性差異,尤以排放強度以及核種粒徑最為明顯。嚴重核事故情境之全年模擬顯示,中國核電廠輻射塵影響台灣機率為50 – 70%之間,台灣北部地區平均輻射沉降量約為103 Bq m-2以上,其輻射塵經過20 – 30小時即可到達台灣。
經由2001 – 2002年春季鋒面、梅雨鋒面以及東北季風等三個個案模擬中,發現沉降分布區域深受降水影響,大氣濃度分布位置則受垂直風場所主導,下沉氣流易使Cs-137輻射塵輸送至大氣邊界層內。當春季鋒面與梅雨鋒面經過台灣時,若中國大亞灣核電廠發生嚴重核事故,則台灣中部以北地區大約在第25小時左右將承受104 – 105 Bq m-2之Cs-137輻射塵沉降量;秦山核電廠輻射塵沉降至台灣的天氣型態為大陸冷高壓位於黃河河套,且事故當時無降水之際,估計最快到達台灣時間為1日之內,沉降區域涵蓋台灣60%之陸地。
本研究中存在幾點不確定性而使得模式無法適用於各種核事故之實際結果,即台灣鄰近國家核電廠資料、排放劑量以及濕沉降作用對於Cs-137影響程度,未來可加強在核事故發生之機制研究及增進模式對水汽的掌握。
This study is aimed to simulating the transport and dispersion of radioactive dust using an atmospheric transport model, and further to assess its impact on Taiwan. Based on 2001 ECMWF meteorological data, we characterized the forward trajectories of airflows originating from 10 nuclear power plant stations in East Asia, and also calculated the frequency of contaminated airflows arriving in Taiwan. The results showed that the airflow from the Qinshan power plant station in China has the highest frequency of 12% reaching Taiwan, and the average travel time is about 2 days. For the airflow from Korea and Japan, the frequency is about 10%, and travel time is within three days. The airflow arriving in Taiwan is strongly associated with Asian Monsoon.
Using the Chernobyl accident initial conditions designed for our NCU-MM5-HYSPLIT model was testified with a good agreement with previous studies. A yearly simulation for the serious nuclear accident in Qinshan and Guangdong power plants was conducted. The results showed that Taiwan is located within a of 50 – 70%, the average Cs-137 deposition in northern Taiwan is about 103 Bq m-2 and travel time is within 20 – 30 hours.
Case study showed that the rainfall can enhance Cs-137 deposition and the vertical motion can determine the maximum Cs-137 deposition locations. For the case of a frontal passage over northern Taiwan, 104 – 105 Bq m-2 was obtained within 25 hours. In contrast, when Qinshan nuclear power plant occurred severe accident in the case of northeast monsoon, radioactive dust can reach Taiwan within 1 day and cover the 60% of Taiwan land.
Keyword: atmospheric transport model, trajectory analysis, radioactive dust.
參考文獻
吳承翰,2002:亞洲沙塵暴之模擬,國立中央大學大氣物理研究所碩士論文。
林能暉、彭啟明及吳承翰,2001︰大陸沙塵暴之長程傳送︰模式模擬與個案探討,環保署大陸沙塵暴研討會。
林能暉,1999:東亞污染物長程傳輸對污染減量改善的影響----東亞硫化物在不同天氣系統下對台灣之長程,第13-42頁。
林能暉、劉振榮、李崇德及嚴明鉦,2000:東亞地區空氣污染物跨國長程傳輸對台灣地區之影響,EPA-89-FA11-03-76,行政院環境保護署。
林能暉,1998:酸沈降之源與受體關係之研究:氣流軌跡分析及降水系統影響,NSC 87-EPA-P-008-003,行政院環境保護署。
林能暉、陳景森,1996:酸沈降之源與受體關係之研究:氣流軌跡分析及降水系統影響,EPA-85-E104-09-03,行政院環境保護署。
林能暉、陳景森,1997:酸沈降之源與受體關係之研究:氣流軌跡分析及降水系統影響,EPA-86-FA44-09-47,行政院環境保護署。
林家德,1986:蘇俄車諾堡核電事故真相大白(上),科學月刊,17-9,698-699。
林家德,1986:蘇俄車諾堡核電事故真相大白(下),科學月刊,17-10,778-785。
林培火、陳清江及林友明,1991:核能電廠氣態排放對地表累積效應之評估,核子科學,28-3,203-208。
張乃斌,2001:核能電廠緊急事故大氣擴散及劑量評估決策支援系統之建立,臺電工程月刊,640,80-109。
黃清勇,2001:污染事件時預測模式系統之發展:高解析度大氣邊界層擴散模式應用,行政院國家科學委員會專題研究報告,160頁。
黃清勇、李坤城,1998:區域空氣擴散數值模式之應用研究,大氣科學,25,511-546。
黃清勇、莊銘棟,1993:盛行東北季風下北台灣核能電廠附近污染物擴散之數值模擬,大氣科學,21,101-124。
黃清勇、莊博清,2002:中尺度模式MM5與大氣擴散模式之整合應用:核電廠污染擴散研究,大氣科學,34,377-408。
戚啟勳,1986:核戰對氣候的可能,科學月刊,17-12,958-961。
翁寶山,1991:綜觀低輻射劑量的健康效應,核子科學,28-3,226-236。
翁寶山,1992:新的輻射防護標準與健康效應,核子科學,29-3,203-210。
趙旋爾,1990:車諾比爾核電廠事故中發生的高輻射粒子,核研季刊,9,109-130。
蘇獻章、邱志宏,1993:歷年來幾件重大核意外事故與劑量評估,核研季刊,18,134-140。
Anthes, R. A., J. Dudhia and D. R. Stauffer, 1994. A description of the fifth-generation Penn State/NCAR mesoscale model(MM5). NCAR technical Note, NCAR/TN-398+STR, 121 pp.
Bolshov L.A., V. V. Chudanov, A. G. Popkov, 1995:Numerical Models of Molten Core Spreading Processes in Nuclear Reactor Safety Problems, Nucl. Sci. J., 32-3, 171-179.
Chen, C. – S. and Y. – L. Chen, 2002:The Rainfall Characteristics of Taiwan. Mon. Wea. Rev., accepted.
DeCort, M. DeCort, G. Graziani, F. Raes, D. Stanners, G. Grippa and I. Ricapito., 1990:Radioactivity Measurements in Europe after the Chernobyl Accident, Part II, Fallout and Deposition. Rapport technique EUR 12800 EN, Commission of the European Communities Joint Research Centre -Ispra Site.
DeCort, M. DeCort, G. Dubois, Sh D. Fridman and M. G. Germenchuk et al., 1998:Atlas of Caesium Deposition on Europe After the Chernobyl Accident. LuxehPaourg, O¢ce for the O¢cial Publications of the European Communities, 176.
Draxler, R.R., Jean, M., Hicks, B., and Randerson, D. 1997, Emergency Preparedness, Regional Specialized Meteorological Centers at Washington and Montreal, Radiation Protection Dosimetry, 73, 27-30.
Draxler, R.R.,1989:Overview and preliminary results from the across North America tracer experiment (ANATEX), Sixth Joint Conf. on Appl. of Air Pollution Meteor., 82 - 85.
Draxler, R. R., 1996: Trajectory optimization for balloon flight planning. Weather and Forecasting, 11, 111-114.
Draxler, R. R., and B.J.B. Stunder, 1988: Modeling the CAPTEX vertical tracer concentrationprofiles. J. Appl. Meteorol., 27, 617-625.
Draxler, R. R., and A.D. Taylor, 1982: Horizontal dispersion parameters for long-range transportmodeling. J. Appl. Meteorol., 21, 367-372.
Eliassen, A., 1980: A review of long-range transport modeling, J. of Appl. Meteor., 19, 1231 - 1240.
Glasston, S. Dolan, P., 1997: The Effects of Nuclear Weapons, U.S. Department of Defense and U.S. Energy Research and Development Administration .
Glasstone,1977: Samuel Glasstone & Philip J. Dolan. The E¤ects of Nuclear Weapons, 3rd edition. United States Department of Defense and United States Department of Energy, 1977. 653 pp.
Gifford, F. A., 1982: Horizontal diffusion in the atmosphere: a lagrangian-dynamical theory, Atmos. Envir., 1982, 16, 505 - 512.
Graziani 1997: Giovanni Graziani. European Tracer Experiment. http://www.ei.jrc.it/etex/, August 1997.Graziani 00. Giovanni Graziani, 2000. Electronic Message, 18 Sep, 2000, JRC, Ispra,Italy.
Hatano Y., N. Hatano, H. Amano, T. Ueno, A. K. Sukhoruchkin and S. V. Kazakov, 1998:Aerosol Migration Near Chernobyl:Long-Term Data and Modeling. Atmos. Environ., 32, 2587-2594.
International Commission on Radiological Protection, 1979:Limits for Intakes of Radionuclide by workers, Report No. ICRP 30.
Klug, W. Klug, G. Graziani, G. Grippa, G. D. Pierce and C. Tassone.,1992:ATMES Report, Evaluation of long range atmospheric transport models using environmental radioactivity data from the Chernobyl accident. Elsevier Science Publishers, England, 1992. 366 pp.
Knap, Anthony H. Knap, 1988: The Long-Range Atmospheric Transport of Natural and Contaminant Substances. Kluwer Academic Publishers, 1988. NATO Advanced Science Institutes Series C: Mathematical and Physical Sciences - Vol. 297, 321 pp.
Lauritzen, B. Lauritzen and T. Mikkelson, 1999:A probabilistic dispersion model applied to the long range transport of radionucleides from the Chernobyl accident. Atm. Environ., vol. 33, pages 3271–3279, 1999. Riso National Laboratory, 4000 Roskilde, Denmark.
Lauritzen B. and T. Mikkelsen, 1999: A probabilistic dispersion model applied to the long-range transport of radionuclides from the Chernobyl accident. Atmos. Environ., 33, 3271-3279.
Lin, U. T., and M.-F. Su, 1988:The Dose Evaluation Model for Nuclear Power Plant Emergency,Report No., INER-RS22-E20-01.
Masood Iqbal and Showket Pervez,2001:Simulations for Dispersion of Radionuclides to the Environment as a Result of Severs Accident in Research Reactors. Nuclear Science Journal, 38, No.4, 236-243.
Maryon R. H. and M. J. Best, 1995:Estimating the Emissions from a Nuclear Accident Using Observations of Radioactivity with Dispersion Model Products. Atmos. Environ., 29, 1853-1869.
Persson, C. Persson, H. Rodhe and L. E. De Geer, 1987: The Chernobyl accident – a meteorological analysis of how radionuclides reached and were deposited in Sweden. AhPaio, 16, 20–31.
Pöllänen R, Toivonen H., 1994: Skin doses from large uranium fuel particles - application to the Chernobyl accident. Radiation Protection Dosimetry, 54: 127 - 132.
Pöllänen R, Toivonen H. Transport of large uranium fuel particles released from a nuclear power plant in a severe accident. Journal of Radiological Protection 1994; 14: 55 - 65.
Pöllänen R, Toivonen H., 1995: Skin dose calculations for uranium fuel particles below 500 m in diameter. Health Physics; 68: 401 - 405.
Pöllänen R, Valkama I, Toivonen H., 1997: Transport of radioactive particles from the Chernobyl accident. Atmospheric Environment, 31: 3575- 3590.
Pöllänen R, Klemola S, Ikäheimonen T K, Rissanen K, Juhanoja J, Paavolainen S, Likonen J., 2001:Analysis of radioactive particles from the Kola Bay area. Analyst, 126:724 - 730.
Seinfeld, J. H. Seinfeld., 1986:Atmospheric Chemistry and Physics of Air Pollution. John Wiley and Sons, New York, 324 pp.
Swanberg E. L. and S. G. Hoffert, 2001:Using Atmospheric 137CS Measurements and HYSPLIT to Confirm Chernobyl as a Source of 137CS in European. 23rd Sciential Research Review: Worldwide Monitoring of Nuclear Explosions. 64-70.
Tiedke, M. Tiedke.,1993:Representation of Clouds in Large-Scale Models. Mon.Wea. Rev., 121, 3040–3061.
U. S. Nuclear Regulatory Commission, 1975: Reactor Safety Study: An Assessment of Accident Risks in U. S. Commercial Nuclear Power Plants, Report No. Wash-1400.
Wang Pao Shan, 1988:Natural Radionuclides and Radiation Doses in Taiwan, Nucl. Sci. J., 25-3, 189-206.