| 研究生: |
陳姿蓉 Tzu-jung Chen |
|---|---|
| 論文名稱: |
奈米錫顆粒之超導與自旋極化間共存及互競現象 Coexistence and Competition between Superconductivity and Spin Polarization in Sn Nanoparticles. |
| 指導教授: |
李文献
Wen-Hsien Li |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 物理學系 Department of Physics |
| 畢業學年度: | 96 |
| 語文別: | 中文 |
| 論文頁數: | 83 |
| 中文關鍵詞: | 錫 、超導 、自旋極化 |
| 外文關鍵詞: | superconductivity, Sn, Tin, spin polarization |
| 相關次數: | 點閱:17 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
採用熱蒸鍍法製備錫奈米顆粒,以Sn_071205表示。透
過AFM與X光繞射鑑定‧徑為7 nm,從X光螢光分析與
X光繞射圖分析,確定Sn_071205樣品成份皆為錫,無
氧化物或者其他元素。
由磁化曲線及變溫磁化率曲線可觀察到Sn_071205樣
品同時具有超導抗磁性及自旋極化效應,兩種效應可
以共存。進一步以壓合的方式改變樣品顆‧間距,在
顆粒間距較大的區域,可觀察到超導抗磁性減弱且自
旋極化增強,判斷兩種效應不單只有共存,彼此之間
還會相互競爭。顆粒間距S=9.5 nm時,庖立順磁磁化
率與飽和磁化強度同時具有極大值。於顆粒間距S=6.9
nm時,樣品產生轉變,庖立順磁磁化率與飽和磁化強
度同時逆勢變小,且於實驗溫度1.8 K以上觀察不到超
導抗磁性,之後繼續壓合超導抗磁性又逐漸增強。
探討超導臨界溫度隨顆粒間距變化趨勢,受到超導能
隙Δ以及平均單電子能階分離能隙δ隨顆粒間距變化
的影響,其關係曲線共可區分為四個區域。此外在低
聚合密度的區間,超導抗磁性的減弱使得穿透深度隨
顆粒間距縮短而逐漸加深,與本實驗室去年的研究大
致上相符合。
Sn nanoparticles were fabricated by thermal
evaporation method. Atomic force microscope images
and x-ray diffraction patterns were performed to
examine particle diameter and composition. A pure 7
nm Sn nanoparticle powder was obtained. No trace of
oxidation or other impurity was found.
AC magnetic susceptibility and magnetization
measurements were performed to study the magnetic
properties. Superconductivity and spin polarization
were observed to coexist at low temperatures. To
study the interplay between spin polarization and
superconductivity, the M-H curves at different interparticle separations were measured. Coexistence and
competition between superconductivity and spin
polarization were found for inter-particle separation
that is greater than 6.9 nm. No superconductivity may
be found at an inter-particle separation of 6.9 nm. As
the inter-particle separation was reduced further, the
superconductivity signals recovered.
The inter-particle interactions linked to the critical
temperature can be divided into four regimes. It is the
competition between superconductivity and spin
polarization that govern the behavior.
[1] 何均考, 錫‧米微‧的超導‧‧與自旋極化, 中央大
學碩士‧文 (2006).
[2] R. S. Markiewicz, C. A. Shiffman, and Wen Ho,
Journal of Low Temperature Physics, Vol 71,175
(1988).
[3] 張玉恆、‧玉芝著, 超導物‧.
[4] B. Mühlschlegel, D. J. Scalapino, and R. Denton,
Phys. Rev. B 6,1767 (1972).
[5] V. L. Ginzburg and L. D. Landau, Zh. Eksperim. i
Teor. Fiz. 20, 1064 (1950).
[6] 翁世宇, 微‧間交互作用對‧米錫超導‧‧的影響,
中央大學碩士‧文 (2007).
[7] 陳書偉, ‧子間交互作用對‧米錫微‧自旋極化的影
響, 中央大學碩士‧文 (2007).
[8] 許樹恩,吳泰伯, X光繞射原‧與材‧結構分析, 初版
(1993),民全書局.
[9] 王進威, 擬合X光繞射峰形判定奈米微粒粉末的粒徑
分佈, 中央大學碩士論文 (2006).
[10] R. Espiau de Lamaestre and H. Bernas, Phys. Rev.
B 73, 125317 (2006).
[11] E. Limpert, W. A. Stahel, and M. Abbt,
BioScience 51, 341(2001).
[12] 吳勝允、李文獻 物理雙月刊 二十八卷五期 (2006)
[13] H. Hori, Y. Yamamoto, T. Iwamoto, T. Miura, T.
Teranishi, and M.Miyake Phys. Rev.B 69, 174411
(2004)
[14] S.H. Kilcoyne and R. Cywinski, “Ferritin:a
model superparamagnet,”J. Magn. Magn. Mater. 140-
144 1466 (1995)
[15] J. G. E. Harris, J. E. Grimaldi, and D. D.Awschalom, “Excess spin and the dynamics of antiferromagnetic ferritin,” Phys. Rev. B 60, 3453 (1999)
[16] M. S. Seehra, V. S. Babu, and A. Manivannan,“Neutron scattering and magnetic studies of ferrihydrite nanoparticles,” Phys. Rev. B 61, 3513 (2000)
[17] Steen Mørup and Britt Rosendahl Hansen,
“Uniform magnetic excitations in nanoparticles,”
Phys. Rev. B 72, 024418 (2005)
[18] Paolo Allia, Marco Coisson, Paola Tiberto,
Franco Vinai, Marcelo Knobel, M. A. Novak, and W.
C. Nunes, “Granular Cu-Co alloys as interacting
superparamagnets,” Phys. Rev. B 64, 144420 (1984)
[19] H. K. Onnes, Leiden Comm. , (1911), 122b, 124c
[20] D.H. Martin, Megnetism in Solids, Iliffe Books
Ltd, 1967
[21] 陳志瑋, 調控鎳奈米微粒粉末的磁化強度, 中央大學
碩士論文(2006).
[22] 鄭佳寧, 顆粒間交互作用對奈米錫顆粒超導參數的
影響 ,中央大學碩 士論文(2008).