| 研究生: |
劉建成 Chien-Cheng Liu |
|---|---|
| 論文名稱: |
使用角度變化率為基準之心電訊號壓縮法 Electrocardiogram Compression Based on Rate of Angle Variance |
| 指導教授: |
蔡章仁
Jang-Zern Tsai |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
資訊電機學院 - 電機工程學系在職專班 Executive Master of Electrical Engineering |
| 畢業學年度: | 96 |
| 語文別: | 中文 |
| 論文頁數: | 69 |
| 中文關鍵詞: | 壓縮 、心電圖 |
| 外文關鍵詞: | compression, ECG |
| 相關次數: | 點閱:8 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文中敘述可用於ECG訊號處理的一種新方法,針對ECG訊號的一些特徵來做資料壓縮處裡。一個心電訊號裡有陡峭斜率變化的QRS波、曲線較為平緩的P以及T波,其中有些取樣點其實可以用其它點取代;使用這個理論把多餘可取代的取樣點刪除。本方法評估在取樣點被削除的情況下,原始角度與變動後的角度的變化量可接受的程度來做為一種可刪除於否的依據。本方法使用較為簡易的數學模型,所需要的運算量非常小,因此特別適用於簡易的可攜式ECG記錄裝置以同步傳輸資料時的資料壓縮。
在第二部份我們會介紹關於這個演算法的具體方法以及數學公式,並且說明各個參數的意義。另外我們會先提出基本的AV演算法(BAV),接下來說明因為使用BAV演算法所遇到的問題進而再提出修改的AV演算法(MAV)。
最後,我們會把BAV以及MAV的演算法實現在MIT-BIT資料庫之中並調整參數以觀察各參數與PRD以及CR之間的關係。最後根據上述的實驗結果,提出討論。
關於何謂簡易的可攜式ECG記錄裝置的說明部份,請參閱附錄A以及附錄B中的簡短說明。
This paper describes a new data compression method of electrocardiogram (ECG) signals. An ECG signal contains steep slopes of QRS complexes and smoother P and T waves. There are certain amounts of sample points in an ECG signal that are redundant and replaceable. Evaluation of the acceptance level of the angel variance after a sample is deleted from the original waveform is used to determine whether the sample point can be deleted or not. This method uses a simple mathematical model and requires very low computation. It is especially suited for data compression during synchronous communication with low-cost portable ECG recorders which have limited computation power.
References
[1] S. Jalaleddine, C. Hutchens, R. Strattan, and W. Coberly, “ECG data compression techniques-A unified approach,” IEEE Trans. Biomed. Eng., vol. 37, no. 4, pp. 329-343, April 1990.
[2] V. Veljkovic, I. Cosic, B. Dimitrijevic, AND D. Lalovic, “SAPA-2 is the Fan,” IEEE Trans. Biomed. Eng., vol. BME-32, no. 5, pp. 337 May 1985.
[3] Y. Zigel, A. Cohen, and A. Katz, “ECG signal compression using analysis by synthesis coding,” IEEE Trans. Biomed. Eng. vol. 47, no. 10, pp. 1308-1316, Oct. 2000.
[4] Z. Lu, D. Y. Kim, and W. A. Pearlman, “Wavelet compression of ECG signals by the set partitioning in hierarchical trees algorithm,” IEEE Trans. Biomed. Eng., vol. 47, no. 7, pp. 849-856, July 2000.
[5] S.-G. Miaou, H.-L. Yen, and C.-L. Lin, “Wavelet-based ECG compression using dynamic vector quantization with tree codevectors in single codebook,” IEEE Transactions on Biomedical Engineering, vol. 49, no. 7, pp. 671–680, 2002.
[6] C.H. Salvado et al., “Airmed-Cardio: A GSM and Internet Services-Based System for Out-of-Hospital Follow-Up of Cardiac Patients,” IEEE TRANSACTIONS ON INFORMATION TECHNOLOGY IN BIOMEDICINE, vol. 9, no.1, MARCH 2005.
[7] G. B. Moody and R. G. Mark, “The impact of the MIT/BIH arrhythmia database,” IEEE Eng. Med. Biol. Mag., vol. 20, no. 3, pp. 45–50, May/ Jun. 2001.
[8] H. Lee and K. M. Buckley, “ECG data compression using cut and align beats approach and 2-D transforms,” IEEE Transactions on Biomedical Engineering, vol. 46, no. 5, pp. 556–564, 1999.
[9] Y. Zigel, A. Cohen, and A. Katz, “The weighted diagnostic distortion (WDD) measure for ECG signal compression,” IEEE Transactions on Biomedical Engineering, vol. 47, no. 11, pp. 1422–1430, 2000.
[10] M. L. Hilton, “Wavelet and wavelet packet compression of electrocardiograms,” IEEE Transactions on Biomedical Engineering, vol. 44, no. 5, pp. 394–402, 1997.
[11] A. Djohan, T. Q. Nguyen, and W. J. Tompkins, “ECG compression using discrete symmetric wavelet transform,” presented at the 17th Int. Conf. IEEE Medicine and Biology, 1995.
[12] M. Blanco-Velasco, F. Cruz-Roldán, J. I. Godino-Llorente, and K. E. Barner, “Wavelet Packets Feasibility Study for the Design of an ECG Compressor,” IEEE Transactions on Biomedical Engineering, vol. 54, no. 4, pp. 766–769, APRIL 2007.
[13] R. Benzid, F. Marir, and N.-E. Bouguechal, “Electrocardiogram Compression Method Based on the Adaptive Wavelet Coefficients Quantization Combined to a Modified Two-Role Encoder,” IEEE SIGNAL PROCESSING LETTERS, VOL. 14, NO. 6, pp. 373-376, JUNE 2007
[14] C.-C. Sun and S.-C. Tai, “Beat-Based ECG Compression Using Gain-Shape Vector Quantization,” IEEE Transactions on Biomedical Engineering, vol. 52, no. 11, pp. 1882–1886, 2005.