跳到主要內容

簡易檢索 / 詳目顯示

研究生: 羅元廷
Yuan-Ting Lo
論文名稱: 超音波輔助添加碳化矽粉末於放電加工模具鋼SKD61之研究
Ultrasonic vibration-assisted electrical discharge machining on SKD61 by adding SiC powder
指導教授: 崔海平
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系在職專班
Executive Master of Mechanical Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 79
中文關鍵詞: 放電加工超音波輔助添加粉末碳化矽
外文關鍵詞: Electrical discharge machining, ultrasonic assisted, powder addition, SiC
相關次數: 點閱:17下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究是利用超音波輔助放電加工模具鋼SKD61,同時在放電液體中添加電阻值遠低於放電液的碳化矽粉末,發展創新之放電加工方法,以獲得精密加工成型之技術,並改善放電加工後之表面粗糙度及增進加工之穩定性,研究中探討各種放電加工參數,例如:碳化矽粉末濃度、峰值電流、放電週期時間、超音波功率等對於加工模具鋼SKD61之各種加工特性影響,加工特性包含表面粗糙度與加工時間,並利用雷射共軛焦表面形貌量測儀(LSCM)與電子掃描顯微鏡(SEM)作表面微結構和加工區變質層觀察。
    實驗結果顯示,放電加工時加入超音波輔助,可使介電液能有效循環,加工熱與放電渣能加速離開加工區域,可提升加工效率、縮短加工時間。此外,於介電液中加入碳化矽粉末,可藉由之適當濃度碳化矽溶液增加介電液的導電度,使架橋效應更顯著,並使加工品質能夠提升。於本研究依序進行單因子實驗後,當參數為放電液濃度5×10-3 wt.%、峰值電流0.8 A、放電週期時間300 µs、超音波功率4段時,可得到本實驗之最佳表面粗糙度值0.684 µmRa,與不加碳化矽的去離子水介電液的表面粗糙度1.300 µmRa相比較,加工後的表面粗糙度Ra值下降了47%,且加工時間亦為較短,以及可獲得較為薄化之再鑄層。


    This research is using ultrasonic-assisted electric discharge machining mold steel SKD61, and add silicon carbide powder whose resistance value is much lower than most of the electric discharge liquid to develop innovative electric discharge machining methods to replace the precision machining molding technology and improve the after-discharge machining,the surface roughness and the stability of processing, various electrical discharge machining parameters under study, such as: discharge liquid concentration, incident current, discharge cycle, ultrasonic power, etc., which affect the various processing characteristics of processing mold steel SKD61.The processing characteristics include the surface Roughness and processing time. And use the laser conjugate focal length surface topography measuring instrument (LSCM) and scanning electron microscope (SEM) to observe the surface microstructure and the processing area metamorphic layer.
    The experimental results show that the addition of ultrasonic assistance during electrical discharge machining can effectively circulate the dielectric fluid. Also, the processing heat and electrical discharge slag can accelerate to leave the processing area, which can improve processing efficiency and shorten processing time.In addition, adding silicon carbide powder to the dielectric fluid can increase the conductivity of the dielectric fluid due to the proper concentration of silicon carbide solution, making the bridging effect more significant and improving the processing quality.In this study, single-factor experiments were performed sequentially, the result show that when the parameters are the concentration of discharge fluid 5×10-3 wt.%, peak current 0.8A, discharge cycle time 300µs, and ultrasonic power 4 segments, the best surface roughness 0.684 µmRa can be obtained. Compared with the surface roughness of 1.300 µmRa of the deionized water dielectric fluid without silicon carbide, the surface roughness Ra value after processing is reduced by 47%, accompanied by shorter processing time and a thinner recasting layer.

    目 錄 摘 要 II ABSTRACT III 誌 謝 V 目 錄 VI 圖目錄 VIII 表目錄 XI 第一章 緒論 1 1-1 研究背景 1 1-2 研究動機及目的 2 1-3 文獻回顧 3 1-4 研究方法 8 第二章 實驗原理 9 2-1 放電加工原理 9 2-1-1 放電加工簡介 9 2-1-2 材料移除機制 10 2-1-3 加工參數及其影響 13 2-1-4 放電加工特性觀察 16 2-2 超音波輔助放電加工之原理 17 2-3 添加粉末改善加工特性之原理 18 第三章 實驗設備、材料及方法 19 3-1 實驗簡介 19 3-2 實驗設備 19 3-3 實驗材料 27 3-4 實驗流程及方法 32 第四章 結果討論 34 4-1碳化矽粉末濃度對放電加工之影響 34 4-2峰值電流對放電加工之影響 41 4-3放電週期時間對放電加工之影響 45 4-4超音波功率對放電加工之影響 51 4-5再鑄層觀察 55 4-6加工斷面之Si含量分佈 57 第五章 結論 59 未來展望 61 參考文獻 62

    參考文獻
    1. Jahan, M. P., Rahman, M., & Wong, Y. S. (2011). “A review on the conventional and micro-electrodischarge machining of tungsten carbide.” International journal of machine tools and manufacture, 51(12), 837-858.
    2. 許世勳,大面積放電加工技術之研究,國立中央大學機械工程研究所,碩士論文,2012。
    3. Ho, K. H., & Newman, S. T. (2003). “State of the art electrical discharge machining (EDM).” International Journal of Machine Tools and Manufacture, 43(13), 1287-1300.
    4. Leão, F. N., & Pashby, I. R. (2004). “A review on the use of environmentally-friendly dielectric fluids in electrical discharge machining.” Journal of materials processing technology, 149(1-3), 341-346.
    5. König, W., Dauw, D. F., Levy, G., & Panten, U. (1988). “EDM-future steps towards the machining of ceramics.” CIRP Annals, 37(2), 623-631.
    6. Soni, J. S. (1994). “Microanalysis of debris formed during rotary EDM of titanium alloy (Ti 6A1 4V) and die steel (T 215 Cr12).” Wear, 177(1), 71-79.
    7. Endo, T., Tsujimoto, T., & Mitsui, K. (2008). “Study of vibration-assisted micro-EDM—the effect of vibration on machining time and stability of discharge.” Precision Engineering, 32(4), 269-277.
    8. Liao, Y. S., Wu, P. S., & Liang, F. Y. (2013). “Study of debris exclusion effect in linear motor equipped die-sinking EDM process.” Procedia Cirp, 6, 123-128.
    9. Simao, J., Lee, H. G., Aspinwall, D. K., Dewes, R. C., & Aspinwall, E. M. (2003). “Workpiece surface modification using electrical discharge machining.” International Journal of Machine Tools and Manufacture, 43(2), 121-128.
    10. Lee, H. T., & Tai, T. Y. (2003). “Relationship between EDM parameters and surface crack formation.” Journal of Materials Processing Technology, 142(3), 676-683.
    11. Lee, S. H., & Li, X. (2003). “Study of the surface integrity of the machined workpiece in the EDM of tungsten carbide.” Journal of materials processing technology, 139(1-3), 315-321.
    12. Salman, Ö., & Kayacan, M. C. (2008). “Evolutionary programming method for modeling the EDM parameters for roughness.” Journal of materials processing technology, 200(1-3), 347-355.
    13. Saxena, K. K., Srivastava, A. S., & Agarwal, S. (2016). “Experimental investigation into the micro-EDM characteristics of conductive SiC.” Ceramics International, 42(1), 1597-1610.
    14. Yerui, F., Yongfeng, G., & Zongfeng, L. (2016). “Experimental investigation of EDM parameters for TiC/Ni cermet machining.” Procedia Cirp, 42, 18-22.
    15. Zeilmann, R. P., Ivaninski, T., & Webber, C. (2018). “Surface integrity of AISI H13 under different pulse time and depths by EDM process.” Procedia CIRP, 71, 472-477.
    16. Buschaiah, K., JagadeeswaraRao, M., & Krishnaiah, A. (2018). “Investigation on the influence of Edm parameters on machining characteristics for Aisi 304.” Materials Today: Proceedings, 5(2), 3648-3656.
    17. Bahgat, M. M., Shash, A. Y., Abd-Rabou, M., & El-Mahallawi, I. S. (2019). “Influence of process parameters in electrical discharge machining on H13 die steel.” Heliyon, 5(6), e01813.
    18. Zhixin, J., Jianhua, Z., & Xing, A. (1995). “Ultrasonic vibration pulse electro-discharge machining of holes in engineering ceramics.” Journal of materials processing technology, 53(3-4), 811-816.
    19. 黃俊曄,放電與超音波振動複合加工添加 TiC 及 SiC,國立中央大學機械工程研究所,碩士論文,2000。
    20. Gao, C., & Liu, Z. (2003). “A study of ultrasonically aided micro-electrical-discharge machining by the application of workpiece vibration.” Journal of materials processing technology, 139(1-3), 226-228.
    21. Praneetpongrung, C., Fukuzawa, Y., Nagasawa, S., & Yamashita, K. (2010). “Effects of the EDM combined ultrasonic vibration on the machining properties of Si3N4.” Materials Transactions, 51(11), 2113-2120.
    22. Lin, Y. C., Chow, H. M., Tsui, H. P., & Chen, Y. F. (2013). “Study on ultrasonic vibration in gas and optimization of a novel process of EDM.” In Advanced Materials Research (Vol. 675, pp. 365-369). Trans Tech Publications Ltd.
    23. Yan, B. H., & Chen, S. L. (1994). “Characteristics of SKD11 by complex process of electrical discharge machining using liquid suspended with alumina powder.” Nippon Kinzoku Gakkaishi (1952), 58(9), 1067-1072.
    24. Chow, H. M., Yan, B. H., Huang, F. Y., & Hung, J. C. (2000). “Study of added powder in kerosene for the micro-slit machining of titanium alloy using electro-discharge machining.” Journal of Materials Processing Technology, 101(1-3), 95-103.
    25. 王陳鴻,放電液中添加 Al-Cr 混合粉末,國立中央大學機械工程研究所,碩士論文,2000。
    26. Zhao, W. S., Meng, Q. G., & Wang, Z. L. (2002). “The application of research on powder mixed EDM in rough machining.” Journal of materials processing technology, 129(1-3), 30-33.
    27. 卓漢明、黃永河、林清田、陳河永、顏炳華 (民91),純水中添加粉末對鈦合金微細槽放電加工特性之研究,南開學報,頁567+569-586。
    28. Kansal, H. K., Singh, S., & Kumar, P. (2007). “Effect of silicon powder mixed EDM on machining rate of AISI D2 die steel.” Journal of Manufacturing processes, 9(1), 13-22.
    29. Prihandana, G. S., Mahardika, M., Hamdi, M., Wong, Y. S., & Mitsui, K. (2009). “Effect of micro-powder suspension and ultrasonic vibration of dielectric fluid in micro-EDM processes—Taguchi approach.” International Journal of Machine Tools and Manufacture, 49(12-13), 1035-1041.
    30. Shabgard, M., & Khosrozadeh, B. (2017). “Investigation of carbon nanotube added dielectric on the surface characteristics and machining performance of Ti–6Al–4V alloy in EDM process.” Journal of Manufacturing processes, 25, 212-219.
    31. Paul, B. K., Sahu, S. K., Jadam, T., Datta, S., Dhupal, D., & Mahapatra, S. S. (2018). “Effects of addition of copper powder in the dielectric media (EDM Oil) on Electro-discharge machining performance of inconel 718 super alloys.” Materials Today: Proceedings, 5(9), 17618-17626.
    32. Muttamara, A., Nakwonga, P., & Thongruang, R. (2018). “Investigations on Ultrasonic vibration Assisted EDM in Tin Powder Mixed Dielectric.” Int. J. Mech. Prod. Eng, 6, 2320.
    33. 李培豪,超音波輔助添加導電粉末於放電加工鐵基金屬玻璃之研究,國立中央大學機械工程研究所,碩士論文,2019。
    34. Bui, V. D., Mwangi, J. W., Meinshausen, A. K., Mueller, A. J., Bertrand, J., & Schubert, A. (2020). “Antibacterial coating of Ti-6Al-4V surfaces using silver nano-powder mixed electrical discharge machining.” Surface and Coatings Technology, 383, 125254.
    35. Kremer, D., Lebrun, J. L., Hosari, B., & Moisan, A. (1989). “Effects of ultrasonic vibrations on the performances in EDM.” CIRP Annals, 38(1), 199-202.

    QR CODE
    :::