| 研究生: |
馮永泰 Yung-Tai Feng |
|---|---|
| 論文名稱: |
溫度指數型保險:以台灣蓮霧為例 |
| 指導教授: |
葉錦徽
Chin-Hui Yeh |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
管理學院 - 財務金融學系 Department of Finance |
| 論文出版年: | 2025 |
| 畢業學年度: | 113 |
| 語文別: | 中文 |
| 論文頁數: | 61 |
| 中文關鍵詞: | 溫度 、指數型 、保險 |
| 相關次數: | 點閱:19 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
氣候變遷導致極端高溫與異常氣候頻率升高,對臺灣高經濟果樹如蓮霧生產
構成實質威脅。傳統農業保險因存在資訊不對稱與道德風險問題,難以有效承擔
天災損失風險,指數型保險因其理賠依據明確且操作彈性高,逐漸成為農業保險
設計趨勢。
本研究以屏東地區蓮霧為對象,整合 2013 至 2023 年氣象與產量資料,建立
七項溫度指標,透過主成分分析(PCA)提取綜合氣候風險指標 PC1,並藉由
Gaussian Mixture Model 進行群集以統計方式推估理賠門檻 Rs 與 Rt,進而設
計線性遞減式理賠函數。為提升門檻設定之穩健性,本研究引入 Bootstrap 重抽
樣技術,計算出 Rs = −2.4091、Rt = −1.5545 為平均理賠門檻。
在保費估算上,本研究進一步以 ARMA 模型擬合 PC1 時序特性,並進行
蒙地卡羅模擬產生 10,000 筆未來氣候指標樣本,套入理賠函數估算期望理賠金
額並折現,結果得純保費為新台幣 108,789 元。相較於 Black-Scholes 模型因履
約機率過低導致保費低估,期望理賠折現法能更真實反映實際風險,具備實務應
用潛力。
本研究建構一套兼具氣候風險評估、門檻設定與保費精算的指數型保險架構,
對於未來發展適應型農業保險商品提供具操作性與可行性之設計參考。
Climate change has increased the frequency of extreme heat and abnormal weather
events, posing a substantial threat to the production of high-value fruit crops in
Taiwan, such as wax apples. Traditional agricultural insurance often struggles to
effectively cover natural disaster risks due to problems like information asymmetry
and moral hazard. In contrast, index-based insurance has emerged as a promising
solution, offering clear claim criteria and high operational flexibility.
This study focuses on wax apple production in Pingtung, Taiwan, utilizing
meteorological and yield data from 2013 to 2023. Seven temperature-based indices
were constructed, and Principal Component Analysis (PCA) was employed to extract
a composite climate risk indicator, PC1. To statistically estimate indemnity
thresholds Rs and Rt, a Gaussian Mixture Model (GMM) was applied for clustering.
A linearly decreasing indemnity function was then designed based on these
thresholds. To enhance the robustness of threshold estimation, a Bootstrap
resampling technique was introduced, yielding average thresholds of Rs = −2.4091
and Rt = −1.5545.
For premium estimation, this study further fitted an ARMA model to capture the
temporal characteristics of PC1 and conducted Monte Carlo simulations to generate
10,000 synthetic climate risk scenarios. These were input into the indemnity function
to calculate expected indemnity payments, which were then discounted. The resulting
pure premium was NT$108,789. Compared to the Black-Scholes model—which tends
to underestimate premiums due to a low probability of payout—the expected
6
indemnity discounting method more accurately reflects real-world risk and offers
greater practical applicability.
This research presents a comprehensive framework for index-based insurance design,
integrating climate risk assessment, threshold estimation, and actuarial premium
pricing. It provides a practical and feasible reference for the future development of
adaptive agricultural insurance products.
Nordhaus, W. (2019). *The Climate Casino: Risk, Uncertainty, and Economics for a
Warming World*. Yale University Press
Chen, C., & Miranda, M. (2008). The effectiveness of index-based insurance
indeveloping countries. *Journal of Risk and Insurance*, 75(3), 575–591.
Choudhury, A., Jones, J., Okine, A., & Choudhury, R. (2016). Drought-triggered
index insurance using cluster analysis of rainfall affected by climate change.
*Journal of Insurance Issues*, 39(2), 169–186.
Mude, A., Chantarat, S., & Barrett, C. B. (2009). Willingness to pay for index based
livestock insurance: Results from a field experiment in Northern Kenya.
Okine, A. N. (2014). Pricing of index insurance using Black-Scholes framework: A
case study of Ghana (Master’s thesis). Illinois State University.
Miranda, M. J., & Glauber, J. W. (1997). Systemic risk, reinsurance, and the failure
of crop insurance markets. *American Journal of Agricultural Economics*,
79(1), 206–215. https://www.jstor.org/stable/1243954
Mahul, O., & Stutley, C. J. (2010). *Government Support to Agricultural Insurance:
Challenges and Options for Developing Countries*. World Bank Publications
Porth, L., & Tan, K. S. (2015). Agricultural Insurance Pricing and Systemic Risk.
*North American Actuarial Journal*, 19(1), 41–58
Zhuang, S. C., Weng, C., Tan, K. S., & Assa, H. (2016). Marginal indemnification
function formulation for optimal reinsurance. *Insurance: Mathematics and
Economics, 67*, 65–76.
Barnett, B. J., Barrett, C. B., & Skees, J. R. (2007). Poverty traps and index-based
risk transfer products. *World Development*, 35(10), 1767–1785.
Carriquiry, M. A., & Osgood, D. E. (2012). Index insurance, probabilistic climate
forecasts, and production. *Journal of Risk and Insurance*, 79(1), 287–300.
International Research Institute for Climate and Society. (2009). *Climate and
Society: Weather and Climate Risk Management in Africa*. Issue No. 2.
Zscheischler, J., Westra, S., van den Hurk, B. J. J. M., Seneviratne, S. I., Ward, P. J.,
Pitman, A., ... & Zhang, X. (2018). Future climate risk from compound events.
*Nature Climate Change*, 8, 469–477.
Mulangu, F. (2015). How to use weather index insurances to address agricultural
price volatility? *UNCTAD Multi-Year Expert Meeting on Commodities and
Development*, Geneva.
Zhang, J., Tan, K. S., & Weng, C. (2019). Index insurance design. *Astin Bulletin*,
49(2), 491–523. https://doi.org/10.1017/asb.2019.5
Charpentier, A. (2008). Insurability of climate risks. *The Geneva Papers on Risk
and Insurance - Issues and Practice*, 33, 91–109.
Collier, B., Skees, J., & Barnett, B. (2009). Weather index insurance and climate
change: Opportunities and challenges in lower income countries. *The Geneva
Papers on Risk and Insurance - Issues and Practice*, 34(3), 401–424.
Skees, J. R., & Collier, B. (2008). The potential of weather index insurance for
spurring a green revolution in Africa. *IFPRI Policy Brief*, International Food
Policy Research Institute.
Yeh, H. F., Chang, C. F., Lee, J. W., & Lee, C. H. (2016). SGI and SPI for drought
characteristics in Gaoping River Basin, Taiwan. *Journal of Chinese Soil and
Water Conservation*, 47(1), 45–52.
Zhuang(2023)。〈最佳再保險的邊際賠償函數公式〉。摘自:Zhuang et al.
(2016),*Insurance: Mathematics and Economics*。
台達電子文教基金會與 IPCC(2021)。全球月均溫變暖程度圖。取自《氣候變
遷第六次評估報告摘要》
郭同慶(1993)。蓮霧生長與溫度變化關係之研究。《熱帶農業研究》,12(2),
45–59
IPCC(2021)。氣溫變異程度圖。取自《極端氣候與災害風險特別報告》
許晃雄、陳正達、盧孟明等(2011)。影響臺灣颱風個數圖。收錄於《臺灣氣
候變遷科學報告》。
賴巧娟(無年份)。稻作生產氣象因子風險評估。《台灣農業氣象期刊》,頁
89–94。
楊明憲、晁娜娜、楊汭華(2021)。釋迦收入保險費率釐訂之研究:應用
Copula 聯合機率密度函數。《應用經濟論叢》,109,83–114
賴柏志。關聯結構(copula)在信用風險管理之運用。本中心風險研究小組
中央氣象署 CODiS(2024)。氣象開放資料平台。取自 https://data.cwa.gov.tw/
農業部農糧署(2024)。農損統計。取自 https://www.afa.gov.tw/
農業天然災害救助辦法 (2015 年 10 月 29 日)
農業部農糧署(2023)。平均農業災損金額圖表。取自《農業統計年報》。
農業部農糧署(2023)。蓮霧產量統計圖。取自《農業統計年報》。
農產品批發市場交易行情資料(2023)。產品交易價量走勢圖。
農業部(2023)。蓮霧種植空間分佈圖。取自《農業統計資料庫》。
農業保險基金(2023)。農業保險各類保單圖表與覆蓋率圖。取自《防災救助
白皮書》
黃奕哲(2023)。〈運用蒙地卡羅統計方式模擬 113 年農業保險理賠情形〉。
財團法人農業保險基金。
游佳軒(2021)。〈稻作氣溫指數型保險:以雲嘉南地區為例〉(碩士論
文)。國立臺北大學金融與合作經營學系。
周百隆(2020)。〈各國農業氣候指數保險發展沿革與模型建構之研究〉。國
立高雄科技大學風險管理與保險系。
王惠正、林明哲、黃琮琪(2014)。〈先進國家實施農業保險之經驗〉。淡江
大學水資源管理與政策研究中心。
張睿(2020)。〈台灣農業保險與系統性風險研究〉。取自台灣碩博士論文加
值網
李美楹(2019)。〈天氣指數型保險─以臺灣烏魚為例〉。取自台灣碩博士論
文加值網