| 研究生: |
洪晟銘 Cheng-Ming Hong |
|---|---|
| 論文名稱: |
相位陣列雷達測海原理運用 The application of remote sensing principle of ocean by phase array radar |
| 指導教授: | 朱延祥 |
| 口試委員: | |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
地球科學學院 - 太空科學與工程學系 Department of Space Science and Engineering |
| 論文出版年: | 2020 |
| 畢業學年度: | 108 |
| 語文別: | 中文 |
| 論文頁數: | 118 |
| 中文關鍵詞: | 相位雷達 、測海雷達 |
| 相關次數: | 點閱:10 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
測海雷達可用於長時間與廣範圍的偵測海面目標特性,其中包括海浪參數、洋流特性、海面風場與船隻定位等,然而海面狀況相當複雜,使得雷達接收到的回波變化很大,因此建立模擬頻譜用以了解回波特性為測海雷達資料分析處理的首要工作。
本研究利用散射截面積理論方程式與風浪模型模擬測海雷達回波頻譜特性,包括流速、風速、風向對功率及都卜勒速度的影響,並藉此驗證多種來向角定位演算法的可行性與優劣,於實際船隻定位及洋流徑向速度解算提供很大的助益,同時針對高頻測海雷達受電離層干擾問題進行分析討論,提供污染距離辨識方法。
在船隻定位上利用HHT與濾船演算法(Cspro)開發自動偵測系統,應用在特高頻測海雷達上偵測率高達81.25%,並且距離誤差僅0.3公里,角度誤差也1度以內,可望用於海域交通的控管。
實驗結果發現特高頻測海雷達受潮汐影響明顯,在功率與徑向速度的比對上,皆符合潮位計資料的特性,並且分析探討使用波束成形技術觀測二維海面潮位變化的可行性。
在徑向流速的比對上,利用漂流浮標比對特高頻與高頻測海雷達的量測結果,發現高頻測海雷達有明顯的偏差,此偏差可用表層流與次表層流受Stoke’s drift與Ekman drift來解釋,估算結果也大致符合實際觀測偏差量,另外,利用特高頻測海雷達觀測資料比對兩種方法在徑向流速的解算結果,發現Capon method的空間覆蓋率較高,但容易在高角度的時候因旁波瓣影響造成計算誤差,與模擬結果一致,而MUSIC解算受限於頻率解析度與訊雜比,在頻率解析度與訊雜比夠高的情況下,亦可得到良好的資料品質,並且擁有不需要大型天線陣列的空間使用效率。
在示性波高反演中發現特高頻測海雷達觀測資料與龜山島浮標量測資料存在倍數關係,需律定參數得到較為可靠的雷達反演資料,本論文利用浮標與雷達反演資料在不同律定參數下的RMSE變化,計算龜山島周回海域利用特高頻測海雷達反演示性波高的律定參數為1.5。
Sea radar can be used to detect characteristic of sea surface, including wave, current, wind, and ship. However, the radar echo has high fluctuation due to the complicate sea sate that constructing a spectrum model to know the echoing feature is the first priority of radar analysis.
This study uses the theoretical radar cross section formula and wind wave model to simulate power spectrum of sea echo to know the influence of Doppler velocity and echo power causing by current and wind. It is also helpful for ship detecting and radial current estimation by comparing different algorithm of direction of arrival from the simulating result. The interference of ionosphere has been analyzed and providing an algorithm for detecting contamination area.
The automatically ship detecting algorithm has been developed by using Hilbert Huang Transform(HHT) and ship filtering program(Cspro). The detecting rate of ship is 81.25% and the root mean square error of range and direction are 0.3km and
less 1 degree.
The influence of Chung-Li Sea Radar(CLSR) radar echo causing by tide is obvious from the experiment. The echo power and radial velocity measuring from VHF radar meet the characteristic of tide height measured from tidal gauge. This study make assessment of two-dimensional tidal gauge by using VHF radar through beamforming technique.
As for the radial current comparison of radar and buoy, it has a bias from the result of CODAR and buoy. This bias can be explained by the difference of surface current and sub-surface current causing by the Stoke’s drift and Ekman drift. And the comparison of radial current calculation between MUSIC and Capon method performs by the CLSR. The Capon method has higher coverage of field of view, but also has higher estimating error when steering angle is too large. The MUSIC needs high signal to noise ratio and frequency resolution to have good quality result without large space of antenna deployment
The significant wave height estimation of CLSR is comparing with buoy at Guishan Island and having a systematic bias that need a calibration factor to have more reliable data. By calculating the root mean square error between radar and buoy measurement of different calibration factor, the calibration factor of CLSR to measure significant wave height around Guishan Island is 1.5.
[1] 國家實驗研究院:台灣海洋科技研究中心:物理海洋,海洋雷達觀測系統。https://www.tori.narl.org.tw/cContent.aspx?sNode=MarinePhysics。
[2] Chen, J. –S., Lai, J. –W., Chien, H., Wang, C. –Y., Su, C. –L., Lin, K. –I., Chen, M. –Y., Chu, Y. –H. (2018). VHF radar observations of sea surface in the Northern Taiwan Strait. Journal of Atmospheric and Oceanic technology, Volume 36.
[3] Barrick, D. E. (1972). First-Order theory and analysis of MF/HF/VHF scatter from the sea. IEEE Transactions on Antennas and Propagation, Vol. AP-20, No. 1.
[4] Barrick, D. E. (1977). Extraction of wave parameters from measured HF radar sea-echo Doppler spectra. Radio Science, Vol. 12, No. 3, pp. 415-424.
[5] Lipa, B. J., Barrick, D. E. (1986). Extraction of sea state from HF radar sea echo: Mathematical theory and modeling. Radio Science, Vol. 21, No. 1, pp. 81-100.
[6] Wyatt, L. R. (1990). A relaxation method for integral inversion applied to HF radar measurement of the ocean wave directional spectrum. International Journal of Remote Sensing, Vol 11, No. 8, pp. 1481-1494.
[7] Heron, S. F., Heron, M. L. (1998). A comparison of algorithms for extracting significant wave height from HF radar ocean backscatter spectra. Journal of Atmospheric and Oceanic Technology, Vol. 15.
[8] Gurgel, K. –W., Antonischki, G., Essen, H. –H., Schlick, T. (1999). Wellen Radar(WERA): a new ground-wave HF radar for ocean remote sensing. Costal Engineering 37.
[9] Gurgel, K. -W., Essen, H. –H., Kingsley, S. P. (1999). High-frequency radars: Physical limitations and recent developments. Coastal Eng., Vol. 37, pp. 201-218.
[10] Schmidt, P. O. (1986). Multiple emitter location and signal parameter estimation. IEEE Transactions on Antennas and Propagation, Vol. AP-34, No. 3.
[11] Laws, K. E., Fernandez, D. M., Paduan, J. D. (2000). Simulation-Based evaluations of HF radar ocean current algorithms. IEEE Journal of Oceanic Engineering, Vol. 25, No. 4.
[12] Graber, H. C., Haus, B. K., Chapman, R. D., Shay, L. K. (1997). HF radar comparisons with moored estimates of current speed and direction: Expected differences and implications. Journal of Geophysical Research, Vol. 102, No. 8, pp. 18, 749-18, 766.
[13] Ponsford, A. M., Dizaji, R., Ding, Z. (2003). A HF surface wave radar based integrated maritime surveillance system.
[14] Xiongbin, W., Lun, L., Yixie, S., Yan, L., Tai, GUO. (2009). Experimental determination of significant waveheight by OSMAR071: comparison with results from buoy. Wuhan University Journal of Natural Sciences, Vol. 14, No. 6, pp. 499-504.
[15] Barrick, D., Lipa, B. (2015). When are HF-radar observed wave heights modulated by periodic tidal and inertial currents? IEEE/OES 11th CWTM, pp. 1-4.
[16] Derr, V. E. (1972). Remote Sensing of Troposphere. Boulder, Colorado: Electrical Engineering Department, CU.
[17] Rice, S. O. (1951). Reflection of electromagnetic waves by slightly rough surfaces, Theory of Electromagnetic Waves, ed. M. Kline, 351-378.
[18] Wright, J. W. (1966). Backscattering from capillary waves with application to sea clutter. IEEE Trans. Ant. Prop. Ap-14, No. 8, pp. 749-754.
[19] Barrick, D. E., Peake, W. H. (1968). A review of scattering from surfaces with different roughness scales. Radio Science, Vol. 3, No. 8.
[20] Lipa, B. J., Barrick, D. E. (1982). Analysis method for Narrow-Beam High-Frequency radar sea echo. Boulder, Colorado: Wave Propagation Laboratory.
[21] Stewart, R. H., Joy, J. W. (1974). HF radio measurements of surface currents. Deep-Sea Research, Vol. 21, pp. 1039-1049.
[22] Barrick, D. E., Snider, J. B. (1977). The statistics of HF Sea-Echo Doppler spectra. IEEE Transactions on Antennas and Propagation.
[23] Barrick, D. E., Lipa, B. J. (1996). A comparison of direction-finding and bean-forming in HF radar ocean surface current mapping. CODAR Ocean Sensor, Los Altos, CA, Phase 1 sbir final report.
[24] Mitsuyasu, H., Tasai, F., Suhara, T., Mizuno, S., Ohkusu, M., Honda, T., Rikiishi, K. (1975). Observations of the directional spectrum of Ocean waves using a Cloverleaf buoy. Journal of Physical Oceanography, Volume 5.
[25] 洪萱芸. “以希爾伯特-黃轉換辨識並濾除特高頻雷達飛機雜波.” National Central University, Master’s thesis, Taoyuan, 2020.
[26] 傅兆平. “國立中央大學特高頻測海雷達回波分析與比對.” National Central University, Master’s thesis, Taoyuan, 2017.
[27] 孫忠佑.“利用特高頻雷達波束成形技術定位船舶軌跡.”National Central University, Master’s thesis, Taoyuan, 2019.
[28] 鐘耀照,“內陸棚及河口混合與擴散特性觀測研究.”National Central University, Doctor’s thesis, Taoyuan, 2019.
[29] Bye, J. A. T. (1967). The wave-drift current. J. Mar. Res., 25(1), 95-102.
[30] Kenyon, K. E. (1969). Stokes drift for random gravity waves. Journal of Geophysical Research, Vol. 74, No. 28.
[31] Ekman, V. W. (1905). On the influence of the Earth’s rotation on ocean-currents. Arkiv for matematik, astronomi o. fysik. Bd 2. N:o 11.
[32] Alattabi, Z. R., Cahl, D., Voulgaris, G. (2019). Swell and wind wave inversion using a single very high frequency(VHF) radar. Journal of Atmospheric and Oceanic Technology, Vol. 36.
[33] Barrick, D. E. (1977). The ocean waveheight nondirectional spectrum from inversion of the HF Sea-Echo Doppler spectrum. Remote Sensing of Environment 6, 201-227.
[34] Chen, Z., Gokeda, G., Yu, Y. (2010). Introduction to Direction of Arrival Estimation. Boston, London: Artech House.
[35] Cochin, V., Forget, P., Seille, B., Mercier, G. (2005). Sea surface currents and wind direction by VHF radar: results and validation. Europe Oceans 2005, Brest, France, Institute of Electrical and Electronics Engineers, 857399.
[36] De Paolo, T., Terrill, E. (2007a). Properties of HF radar compact antenna arrays and their effect on the MUSIC algorithm. Scripps Institution of Oceanography Tech. Rep., pp. 40.
[37] Essen, H. –H. (1993). Ekman portions of surface currents, as measured by radar in different areas. Deutsche Hydrogr. Z., 45, 57-85.
[38] Fernandez, D. M., Vesecky, J. F., Teague, C. C. (1996). Measurements of upper ocean surface current shear with high-frequency radar. Journal of Geophysical Research, Vol. 101, No. C12, pp. 28,615-28,625.
[39] Gao, H., Li, G., Li, Y., Yang, Z., Wu, X. (2006). Ionospheric effect of HF surface wave over-the-horizon radar. Radio Science, Vol. 41.
[40] Hickey, K., Khan, R. H., Walsh, J. (1995). Parametric estimation of ocean surface currents with HF radar. IEEE Journal of Ocean Engineering, Vol. 20, No. 2.
[41] Halverson, M., Pawlowicz, R. (2017). Dependence of 25 MHz HF radar working range on Near-Surface conductivity, sea state, and tides. Journal of Atmospheric and Oceanic Technology, Volume 34.
[42] Kara, A. B., Wallcraft, A. J., Metzger, E. J., Hurlburt, H. E. (2007). Notes and correspondence wind stress drag coefficient over the global ocean. Journal of Climate, Vol. 20.
[43] Khan, R., Gamberg, B., Power, D., Walsh, J., Dawe, B., Pearson, W., Millan, D. (1994). Target detection and tracking with a high frequency ground wave radar. IEEE Journal of Oceanic Engineering, Vol. 19, No. 4.
[44] Kirincich, A. (2016). Remote sensing of the Surface wind field over coastal ocean via direct calibration of HF radar backscatter power. Journal of Atmospheric and Oceanic Technology, Volume 33.
[45] Li, X., Yu, C., Su, F., Quan, T., Chu, X., Wang, S. (2018). Significant wave height extraction using a low-frequency HFSWR system under low sea state. IET Radar Sonar & Navigation, Vol. 12.
[46] Liu, Y., Weisberg, R. H., Merz, C. R. (2014). Assessment of CODAR SeaSonde and WERA HF radars in Mapping surface currents on the West Florida Shelf. Journal of Atmospheric and Oceanic Technology, Volume 31.
[47] Lipa, B. (1977). Derivation of directional ocean-wave spectra by integral inversion of second-order radar echoes. Radio Science, Vol. 12, No. 3, pp. 425-434.
[48] Lipa, B. J., Barrick, D. E. (1983). Least-Squares methods for the extraction of surface currents from CODAR crossed-loop data: Application at ARSLOE. IEEE Journal of Oceanic Engineering, Vol. OE-8, No. 4.
[49] Moskowitz, L. (1964). Estimates of the power spectrums for fully developed seas for wind speeds of 20 to 40 knots. Journal of Geophysical Research, Vol. 69, No. 24.
[50] Ponsford, A. M., Wang, J. (2010). A review of high frequency surface wave radar for detection and tracking of ships. Turk J Elec Eng & Comp Sci, Vol. 18, No. 3.
[51] Prandle, D., Loch, S. G., Player, R. (1993). Tidal flow through the straits of Dover. Journal of Physical Oceanography, Vol. 23.
[52] Shay, L. K., Cook, T. M., Peters, H., Mariano, A. J., Weisberg, R., An, P. E., Soloviev, A., Luther, M. (2002). Very high-frequency radar mapping of surface currents. IEEE Journal of Oceanic Engineering, Vol. 27, No. 2.
[53] Shay, L. K., Pedraja, J. M., Cook, T. M., Haus, B. K. (2007). High-Frequency radar mapping of surface currents using WERA. Journal of Atmospheric and Oceanic Technology, Vol. 24.
[54] Wang, C. –Y., Su, C. –L., Wu, K. –H., Chu, Y. -H. (2017). Cross spectral analysis of CODAR-SeaSonde echoes from sea surface and Ionosphere at Taiwan. International Journal of Antennas and Propagation, Volume 2017, Article ID 1756761, 14 pages. Hindawi Publishing Corporation.
[55] Wyatt, L. R., Ledgard, L. J., Webster, S., Kinhsley, S. P. (1996). An evaluation of the OSCR HF radar system for ocean wave measurement. Proc. Of IEEE Oceans ’96.
[56] Wyatt, L. R., Green, J. J., Middleditch, A., Moorhead, M. D., Howarth, J., Holt, M., Keogh, S. (2006). Operational wave, current, and wind measurements with the Pisces HF radar. IEEE Journal of Oceanic Engineering, Vol. 31, No. 4.
[57] Wyatt, L. R., Green, J. J. (2009). Measuring high and low waves with HF radar. Proc. Ocean-Europe, pp. 1-5.
[58] Yang, S., Ke, H., Wu, X., Tian, J., Hou, J. (2005). HF radar ocean current algorithm based on MUSIC and validation experiments. IEEE Journal of Oceanic Engineering, Vol. 30, No. 3.
[59] Zhao, C., Chen, Z., Zeng, C., Zhang, L., Xie, F. (2015). Evaluating radial current measurement of multifrequency HF radar with multidepth ADCP data during a small storm. Journal of Atmospheric and Oceanic Technology, Vol. 32.
[60] Zhou, H., Wen, B. (2015). Wave height extraction from the first-order Bragg peaks in High-Frequency radars. IEEE Geoscience and remote sensing letters, Vol. 12, No. 11.
[61] Zhao, C., Chen, Z., Zeng, G., Zhang, L. (2016). A new multi-frequency HF radar based on small circular antenna array for sea surface current measurement. Oceans 2016, Shanghai, China, pp. 1-5.