| 研究生: |
徐英凱 Ying-Kai Hsu |
|---|---|
| 論文名稱: |
陰影疊紋式力-位移量測技術之研究 |
| 指導教授: | 韋安琪 |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 光機電工程研究所 Graduate Institute of Opto-mechatronics Engineering |
| 論文出版年: | 2019 |
| 畢業學年度: | 107 |
| 語文別: | 中文 |
| 論文頁數: | 105 |
| 中文關鍵詞: | 陰影疊紋 、位移量測 、力-位移量測 |
| 外文關鍵詞: | Shadow moire, displacement measurement, force-displacement measurement |
| 相關次數: | 點閱:26 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近年來,機械手臂逐漸普及於人類生活,因此各項感測元件亦漸受重視。本論文提出了一種新的角度與力-位移即時測量技術。本技術以陰影疊紋原理為基礎,透過所設計的感測片表面結構,搭配疊紋相位移測量的4步相移法,可即時取得感測片上各點的位移資訊。本研究首先根據光柵週期、入射光角度與觀測角設計出具四階結構或斜面結構的感測片,並架設陰影疊紋系統進行位移、角度與力-位移的疊紋拍攝。再將取得的疊紋影像,以Matlab撰寫程式進行位移分析,以驗證此創新構想的可行性。最後,將誤差分析列入考量,討論可能造成預期結果與實驗結果不同之主因。
所提出的技術的優點包括:本技術可大幅減少信號線數目且對電磁波和振動的敏感性低,並且藉由感測片的設計,將傳統陰影疊紋的移相裝置去除。實驗結果顯示,本技術的位移量測系統精密度為6µm,並且可區別出0g~300g的力-位移,擁有10g的解析能力,在本文的最後探討了各種誤差來源。此系統應用層面廣,可架設於自動化工廠中的各類夾具上以即時回饋位移情形。
In recent years, mechanical arms come into our life everywhere, such that many kinds of sensors have been developed. This thesis presents a new technique for angular and force-displacement measurement. We improve the traditional shadow moiré system by designing a target surface structure. Combine the 4-step phase shift method and the measurement of moiré shifting, we can obtain the displacement information of the target. Firstly, the targets with the fourth-order structure and the ramped structure are designed according to the effective grating pitch. The shadow moiré system is set up to measure the displacement, angular and force-displacement. The captured image of the moiré will be analyzed by Matlab to verify the feasibility of this innovative concept. Finally, the experimental results and the tolerances were analyzed and discussed.
The merits of the proposed technique consist of few signal wires and less susceptibility to electromagnetic waves and vibrations. The experimental results show that the proposed design has good relative relationship between the force and the displacement, leading to various applications, such as tactile sensors.
[1] Z. Kappassov, J. A. Corrales, and V. Perdereau, "Tactile sensing in dexterous robot hands," Robotics and Autonomous Systems 74(17), 195-220 (2015).
[2] P. Yu, W. Liu, C. Gu, X. Cheng, and X. Fu, "Flexible piezoelectric tactile sensor array for dynamic three-axis force measurement," Sensors 16(6), 819 (2016).
[3] T. Li, H. Luo, L. Qin, X. Wang, Z. Xiong, H. Ding, Y. Gu, Z. Liu, and T. Zhang, "Flexible capacitive tactile sensor based on micropatterned dielectric layer," Small 12(36), 5042-5048 (2016).
[4] C. Zhu, Y. Chen, Y. Du, Y. Zhuang, F. Liu, R. E. Gerald, and J. Huang, "A displacement sensor with centimeter dynamic range and submicrometer resolution based on an optical interferometer," IEEE Sensors Journal 17(17), 5523-5528 (2017).
[5] P. D. Groot, "Principles of interference microscopy for the measurement of surface topography," Advances in Optics and Photonics 7(1), 1-65 (2015).
[6] W. Yuan, S. Dong, and E. Adelson, "Gelsight: High-resolution robot tactile sensors for estimating geometry and force," Sensors 17(12), 2762 (2017).
[7] M. K. Johnson, E. H. Adelson, "Retrographic sensing for the measurement of surface texture and shape," IEEE Conference on Computer Vision and Pattern Recognition, (2009).
[8] J. Konstantinova, A. Stilli, and K. Althoefer, "Fingertip Fiber Optical Tactile Array with Two-Level Spring Structure," Sensors 17(10), 2337 (2017).
[9] J. S. Heo, J. H. Chung, J. J. Lee, "Tactile sensor arrays using fiber Bragg grating sensors," Sensors and Actuators A: Physical 126(2), 312-327 (2006).
[10] L. Rayleigh, "XII. On the manufacture and theory of diffraction-gratings," London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science 47(310), 81-93 (1874).
[11] S. H. Rowe and W. T. Welford, "Surface topography of non-optical surfaces by projected interference fringes," Nature 216(5117), 786-787 (1967).
[12] 潘同宣,「疊紋自動準直儀系統」,國立中央大學,碩士論文,2013年。
[13] Y. C. Park, S. W. Kim, "Determination of two-dimensional planar displacement by moiré fringes of concentric-circle gratings," Applied Optics 33(22), 5171-5176 (1994).
[14] K. S. Chen, T. Y. Chen, C. C. Chuang, and I. K. Lin, "Full-field wafer level thin film stress measurement by phase-stepping shadow moiré/spl acute," IEEE Transactions on Components and Packaging Technologies 27(3), 594-601 (2004).
[15] 張家壽,「應用數位投影疊紋法於微小尺寸表面之量測」,國立台灣大學,碩士論文,2000年。
[16] C. M. Liu, L. W. Chen, "Using the digital phase-shifting projection Moiré method and wavelet transformation to measure the deformation of a PMMA cantilever beam," Polymer Testing 24(5), 576-582 (2005).
[17] H. Ding, R. E. Powell, C. R. Hanna, and I. C. Ume, "Warpage measurement comparison using shadow moiré and projection moiré methods," IEEE Transactions on Components and Packaging Technologies 25(4), 714-721 (2002).
[18] C. Han, B. Han, "Error analysis of the phase-shifting technique when applied to shadow moiré," Applied Optics 45(6), 1124-1133 (2006).
[19] K. J. Gåsvik, Optical metrology, (John Wily & Sons, West Sussex, England, 2002), 3rd Ed., 173-186.
[20] P. S. Huang and S. Zhang, "Fast three-step phase-shifting algorithm," Applied Optics 45(21), 5086-5091 (2006).
[21] H. Du, J. Yu, and S. Zhang, " Improving the measurement accuracy of shadow moiré by three-step random phase-shifting algorithm," Optical Engineering 57(5), 054107 (2018).
[22] E. H. Kim, J. Hahn, H. Kim, and B. Lee," Profilometry without phase unwrapping using multi-frequency and four-step phase-shift sinusoidal fringe projection," Optics Express 17(10), 7818-7830 (2009).
[23] B. Pan, Q. Kemao, L. Huang, and A. Asundi," Phase error analysis and compensation for nonsinusoidal waveforms in phase-shifting digital fringe projection profilometry," Optics Letters 34(4), 416-418 (2009).
[24] P. Pinit, E. Umezaki, “Digitally whole-field analysis of isoclinic parameter in photoelasticity for four-step color phase-shifting technique,” Optics and Lasers in Engineering 45(7), 795–807 (2007).
[25] P. Carré,"Installation et utilisation du comparateur photoélectrique et interférentiel du Bureau International des Poids et Mesures," Metrologia 2(1), 13-23 (1966).
[26] P. Hariharan, B. F. Oreb, and T. Eiju, "Digital phase-shifting interferometry: a simple error-compensating phase calculation algorithm," Applied Optics 26(13), 2504-2506 (1987).
[27] M. Servin, J. C. Estrada, and J. A. Quiroga," The general theory of phase shifting algorithms," Optics Express 17(24), 21867-21881 (2009).
[28] M. Wang, L. Ma, D. Li, and J. Zhong, “Subfringe integration method for automatic analysis of Moiré deflection tomography,” Optical Engineering 39(10), 2726-2733 (2000).
[29] Y. Zhu, L. Zhong, X. Lv, Y. Luo, and C. She, "A novel phase unwrapping method based on cosine function," Advanced Materials and Devices for Sensing and Imaging II. Vol. 5633. International Society for Optics and Photonics, 383-393 (2005).
[30] J. M. Huntley, H. Saldner, "Temporal phase-unwrapping algorithm for automated interferogram analysis," Applied Optics 32(17), 3047-3052 (1993).
[31] J. Sun, J. Zhang, Z. Liu, and G. Zhang, "A vision measurement model of laser displacement sensor and its calibration method," Optics and Lasers in Engineering 51(12), 1344-1352 (2013).
[32] 洪佩芳,「高分子光柵應用於太陽光分光元件」,國立中央大學,碩士論文,2016 年。