跳到主要內容

簡易檢索 / 詳目顯示

研究生: 陳景仁
Jan-Ren Cheng
論文名稱: 高強度鋼骨鋼筋混凝土含鋼量與耐震行為研究
指導教授: 許協隆
Hsieh-Lung Hsu
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
畢業學年度: 90
語文別: 中文
論文頁數: 114
中文關鍵詞: 鋼骨鋼筋混凝土
外文關鍵詞: steel reinforcing concrete
相關次數: 點閱:17下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 鋼骨鋼筋混凝土結構,兼具鋼筋混凝土及鋼結構之優點,為一
    良好耐震構材,但其斷面配置與韌性關係至今仍少有相關研究。一般
    認為鋼骨可增加構件之韌性,而鋼筋可增加強度,但在鋼骨鋼筋混凝
    土中二者又是該如何配置方為一良好設計,唯一值得探討課題。
    本研究利用混凝土強度、鋼骨量、鋼筋量及圍束型式之改變,
    探討構件含鋼量的改變在不同混凝土強度及圍束型式下,對構件之位
    移、能量韌性及勁度衰減等影響,並使用程式Response 2000 預測構
    件彎矩-曲率關係,並分析比較之。研究顯示,在一般強度混凝土中
    以鋼骨量的改變對構件韌性有較大改善,而在高強度混凝土中,無論
    鋼骨改變或者鋼筋改變均對構件韌性無明顯改變,但以圍束之型式對
    高強度混凝土構件韌性之改善有較顯著效果。


    Steel reinforced concrete (SRC) members are suitable structural
    forms for earthquake-resistant designs because they possess significant
    strength and ductility. Current studies on the seismic behavior of SRC
    members are mostly focused on their flexural as well as beam-column
    responses. Investigation on the relationship between member
    performance and the section placement is still limited. It has been found
    in concrete and steel related studies that steel ratio contributes to the
    ductility enhancement and the steel reinforcement helps increase member
    stiffness. Since the SRC members are composed of steel and reinforced
    concrete, the placements of steel and steel reinforcement also affect the
    members’ behavior.
    This study is focused on the experimental investigation of seismic
    performance of SRC members composed of normal and high strength
    concrete with various reinforcement placements. Test results show that
    the ductility of normal strength SRC members is governed by the steel
    ratio. It is also confirmed that the ductility of high strength SRC members
    is affected by the effectiveness of confinement.

    目錄……………………………………………………………I 表目錄……………………………………………………….IV 圖目錄……………………………………………………….V 照片目錄…………………………………………………V I II 第一章緒論……………………………………………I 1.1 前言.................................................................................................................. 1 1.2 研究動機與目的........................................................................................ 1 1.3 研究方法與內容........................................................................................ 2 第二章文獻回顧……………………………………….4 2.1 國內外相關研究........................................................................................ 4 2.2 美國ACI 相關規定【1 】..................................................................... 6 2.3 美國AISC-LRFD 相關規定【2 】..................................................... 8 2.4 日本AIJ-SRC 相關規定【3 】............................................................... 10 2 .5 國內「鋼骨鋼筋混凝土構造 (S R C )設計規範與解說」 【27 】...................................................................................................................... 14 第三章分析模式及理論闡述…………………………16 3.1 混凝土圍束模式...................................................................................... 16 3.1.1 Cusson and Palture model(CP model 1995)【15 】 .. 16 3.1.2 Razvi and Saatcioglu model (RS model 1999)【16 】 .. 186.3 勁度衰減...................................................................................................... 40 6.4 Response 2000 程式............................................................................. 41 第七章結論與建議……………………………………43 7.1 結論................................................................................................................ 43 7.2 建議................................................................................................................ 44 參考文獻…………………………………………………....... 45 附表…………………………………………………………... 50 附圖…………………………………………………………... 55 照片…………………………………………………………... 57 表4-1 試體編號及配置一覽表..........................50 表4-2 混凝土材料試驗強度表..........................51 表4-3 鋼筋材料試驗強度表............................51 表6-1 構件強度與規範強度比較表.......................52 表6-2 位移韌性及構件強度一覽表.......................53 表6-3 消能韌性一覽表................................54 圖3-1 混凝土有效圍束面積【15 】.......................55 圖3-2 CP model 應力應變圖【15 】......................55 圖3-3 等效均佈圍束壓力【16 】.........................56 圖3-4 RS model 應力應變圖【16 】......................56 圖4-1 箍筋圍束形式..................................57 圖4-2 試體圍束形式S 斷面配置圖.......................58 圖4-3 試體圍束形式T 斷面配置圖.......................58 圖4-4 試體實作細部構造圖............................59 圖4-5 試體實作細部構造圖.............................59 圖4-6 試體實作細部構造圖.............................59 圖4-7 應變計黏貼位置................................60 圖4-8 試驗設備配置圖................................61 圖5-1 試體NT-B-5-L 荷重-位移關係圖...................62 圖5-2 試體NS-A-5 荷重-位移關係圖.....................63 圖5-3 試體NS-B-5 荷重-位移關係圖.....................64 圖5-4 試體NS-B-6 荷重-位移關係圖.....................65 圖5-5 試體NS-B-7 荷重-位移關係圖.....................66 圖5-6 試體NS-C-5 荷重-位移關係圖.....................67 圖5-7 試體NT-B-5 荷重-位移關係圖.....................68 圖5-8 試體NT-B-6 荷重-位移關係圖.....................69 圖5-9 試體NT-B-7 荷重-位移關係圖.....................70 圖5-10 試體NT-C-5 荷重-位移關係圖....................71 圖5-11 試體HS-A-5 荷重-位移關係圖....................72 圖5-12 試體HS-B-5 荷重-位移關係圖....................73 圖5-13 試體HS-B-6 荷重-位移關係圖....................74 圖5-14 試體HS-B-7 荷重-位移關係圖....................75 圖5-15 試體HS-C-5 荷重-位移關係圖....................76 圖5-16 試體HT-A-5 荷重-位移關係圖....................77 圖5-17 試體HT-B-5 荷重-位移關係圖....................78 圖5-18 試體HT-B-6 荷重-位移關係圖....................79 圖5-19 試體HT-B-7 荷重-位移關係圖....................80 圖5-20 試體HT-C-5 荷重-位移關係圖....................81 圖6-1 規範計算極限強度受鋼骨變化影響圖...............85 圖6-2 規範計算極限強度受鋼筋變化影響圖...............85 圖6-3 鋼骨量對構件位移韌性影響圖.....................86 圖6-4 鋼筋量對構件位移韌性影響圖.....................86 圖6-5 保護層厚度對構件位移韌性影響圖.................87 圖6-6 鋼骨量對構件能量韌性影響圖.....................88 圖6-7 鋼筋量對構件能量韌性影響圖.....................88 圖6-8 混凝土強度及鋼骨比對圍束改善位移韌性影響圖......89 圖6-9 混凝土強度及鋼筋比對圍束改善位移韌性影響圖......89 圖6-10 混凝土強度及鋼骨比對圍束改善能量韌性影響圖.....90 圖6-11 混凝土強度及鋼筋比對圍束改善能量韌性影響圖.....90 圖6-12 一般強度混凝土構件勁度衰減受鋼骨量影響圖.......91 圖6-13 一般強度混凝土構件勁度衰減受鋼筋量影響圖.......91 圖6-14 一般強度混凝土構件勁度衰減受鋼骨量影響圖.......92 圖6-15 一般強度混凝土構件勁度衰減受鋼筋量影響圖.......92 圖6-16 高強度混凝土構件勁度衰減受鋼骨量影響圖.........93 圖6-17 高強度混凝土構件勁度衰減受鋼筋量影響圖.........93 圖6-18 高強度混凝土構件勁度衰減受鋼骨量影響圖.........94 圖6-19 高強度混凝土構件勁度衰減受鋼筋量影響圖.........94 圖6-20 懸臂樑彎曲圖.................................95 圖6-21 試體受組合載重軸力及水平力變位圖..............95 圖6-22 試體NS-A-5 試驗值與Response 2000 分析值比較圖..96 圖6-23 試體NS-B-5 試驗值與Response 2000 分析值比較圖..96 圖6-24 試體NS-B-7 試驗值與Response 2000 分析值比較圖...97 圖6-25 試體NT-B-5 試驗值與Response 2000 分析值比較圖...97 圖6-26 試體NT-B-7 試驗值與Response 2000 分析值比較圖...98 圖6-27 試體NT-C-5 試驗值與Response 2000 分析值比較圖...98 圖6-28 試體HS-A-5 試驗值與Response 2000 分析值比較圖...99 圖6-29 試體HS-B-5 試驗值與Response 2000 分析值比較圖...99 圖6-30 試體HS-B-6 試驗值與Response 2000 分析值比較圖.100 圖6-31 試體HT-B-6 試驗值與Response 2000 分析值比較圖..100 圖6-32 試體HT-B-7 試驗值與Response 2000 分析值比較圖..101 圖6-33 試體HT-C-5 試驗值與Response 2000 分析值比較圖..101 照片4-1 繫筋.......................................57 照片5-1 試體NT-B-5-L 破壞過程........................62 照片5-2 試體NS-A-5 破壞過程..........................63 照片5-3 試體NS-B-5 破壞過程..........................64 照片5-4 試體NS-B-6 破壞過程..........................65 照片5-5 試體NS-B-7 破壞過程..........................66 照片5-6 試體NS-C-5 破壞過程..........................67 照片5-7 試體NT-B-5 破壞過程..........................68 照片5-8 試體NT-B-6 破壞過程..........................69 照片5-9 試體NT-B-7 破壞過程..........................70 照片5-10 試體NT-C-5 破壞過程.........................71 照片5-11 試體HS-A-5 破壞過程.........................72 照片5-12 試體HS-B-5 破壞過程.........................73 照片5-13 試體HS-B-6 破壞過程.........................74 照片5-14 試體HS-B-7 破壞過程.........................75 照片5-15 試體HS-C-5 破壞過程.........................76 照片5-16 試體HT-A-5 破壞過程.........................77 照片5-17 試體HT-B-5 破壞過程.........................78 照片5-18 試體HT-B-6 破壞過程.........................79 照片5-19 試體HT-B-7 破壞過程.........................80 照片5-20 試體HT-C-5 破壞過程.........................81 照片5-21 圍束形式對破壞模式之影響圖..................82 照片5-22 鋼骨量對破壞模式之影響圖...................83 照片5-23 鋼筋量對破壞模式之影響圖...................84


    (ACI318-95).”American Concrete Institute,Detroit,
    Michigan.,1995.
    【2 】AISC,“Load and resistance factor design.”Second edition,
    American Institute of Steel Construction,Inc.,1994.
    【3 】AIJ,“AIJ Standards for Structural Calculation of Steel
    Reinforced Concrete Structures.”Architectural Institute of
    Japan.
    【4 】Lin,C.H.,and Lee,F.S.”Ductility of High Performance
    Concrete Beams with High-Strength Lateral Reinforcement.”ACI
    Structural Journal,Vol.98,NO.4,July-August 2001,
    pp.600-608.
    【5 】Foster,S.J.“On Behavior of High-Strength Concrete
    Columns:Cover Spalling,Steel Fibers,and Ductility.”ACI
    Structural Journal,Vol.98,NO.4,July-August 2001,
    pp.583-589.
    【6 】Lege ’ron,F.,and Paultre,P.“Behavior of High Strength
    Concrete Columns under Cyclic Flexure and Constant Axial Load.”
    ACI Structural Journal,Vol.97,NO.4,July-August 2000,
    pp.591-601.
    【7 】Ibrahim,H.H.Hisham.,and MacGregor,J.G.“Modification
    of the ACI Rectangular Stress Block for High-StrengthConcrete.”ACI Structural Journal,Vol.94,NO.1,
    January-February 1997,pp.40-48.
    【8 】Bing,L.,Park,R.,and Tanaka,H.“Stress-Strain Behavior
    of High-Strength Concrete Confined by Ultra-High-and
    Normal-Strength Transverse Reinforcements.”ACI Structural
    Journal,Vol.98,NO.3,May-June 2001,pp.395-406.
    【9 】Mirza,S.A.,and Tikka,T.K.“Flexural Stiffness of
    Composite Columns Subjected to Major Axis Bending.”ACI
    Structural Journal,Vol.96,NO.1,January-February 1999,
    pp.19-28.
    【10 】Razvi,S.R.,and Saatcioglu,M.“Strength and
    Deformability of Confined High-Strength Concrete Columns.”ACI
    Structural Journal,Vol.91,NO.6,November-December 1994,
    pp.678-687.
    【11 】Paultre,P.,Le ’geron,F.,and Mongeau,D.“Influence of
    Concrete Strength and Transverse Reinforcement Yield Strength
    on Behavior of High-Strength Concrete Columns.”ACI Structural
    Journal,Vol.98,NO.4,July-August 2001,pp.490-501.
    【12 】Assa,B.,Nishiyma,M.,and Watanabe,F.“New Approach
    for Modeling Confined Concrete.II:Rectangular Columns.”ASCE
    Journal of Structural engineering,Vol.127,NO.7,July,2001,
    pp.751-757.
    【13 】Dancygier,A.N.,and Eid,R.“Upper Limit to Compression
    Reinforcement Ratio in Flexural Elements.”ASCE Journal
    Structural engineering,Vol.127,NO.1,January,2001,
    pp.58-63.
    【14 】El-Tawil,S.,and Deierlein,G.G.“Strength and Ductility
    of Concrete Encased Composite Columns.”ASCE Journal of
    Structural engineering,Vol.125,NO.9,September,1999,
    pp.1009-1019.
    【15 】Cusson,D.,and Paultre,P.“Stress-Strain Model for
    Confined High-Strength Concrete.”ASCE Journal of Structural
    engineering,Vol.121,NO.3,March,1995,pp.468-477.
    【16 】Razvi,S.,and Saatcioglu,M.“Confinement Model for
    Hogh-Strength Concrete.”ASCE Journal of Structural
    engineering,Vol.125,NO.3,March,1999,pp.281-289.
    【17 】Ricles,J.M.,and Paboojian,S.D.“Seismic Performance
    of Steel-Encased Composite Columns.”ASCE Journal of Structural
    engineering,Vol.120,NO.8,August,1994,pp.2474-2494.
    【18 】Saatcioglu,M.,Salamat,A.H.,and Razvi,S.R.“Confined
    Columns under Eccentric Loading.”ASCE Journal of Structural
    engineering,Vol.121,NO.11,November,1995,pp.1547-1555.
    【19 】Cusson,D.,and Paultre,P.“High-Strength Concrete
    Columns Confined by Rectangular Ties.”ASCE Journal of
    Structural engineering,Vol.120,NO.3,March,1994,
    pp.783-804.
    【20 】Mander,J.B.,Priestley,J.N.,and Park,R.“Theoretical
    Stress-Strain Model for Confined Concrete.”ASCE Journal of
    Structural engineering,Vol.114,NO.8,August,1988,
    pp.1804-1826.
    【21 】Cusson,D.,De Larrard,F.,Boulay,C.,and Paultre,P.
    “Strain Localization in Confined High-Strength Concrete
    Columns.”ASCE Journal of Structural engineering,Vol.122,NO.9,
    September,1996,pp.1055-1061.
    【22 】Wee,T.H.,and Mansur,M.A.“Stress-Strain Relationship
    of High-Strength Concrete in Compression.”ASCE Journal of
    Materials in Civil Engineering,Vol.8,NO.2,May,1996,
    pp.70-76.
    【23 】Martirossyan,A.,and Xiao,Y.,“Compressive Behavior of
    Square High-Strength Concrete Columns Reinforced with W-Shape
    Steel.”Ph.D.thesis supervised by Y.Xiao,University of
    Southern California,Los Angles.
    【24 】Li,L.,and Matsui,C.“Effects of Axial Force on Deformation
    Capacity of Steel Encased Reinforced Concrete Beam-Columns.”,
    Summaries of Technical Papers of Annual Meeting,Kyushu Branch
    of Architectural Institute of Japan,2000,pp1075.
    【25 】Waranabe,F.Lee.,J.Y.and Nishiyama,M.“Structural
    Performance of Reinforced Concrete Columns with Different Grade
    Longitudinal Bars.”ACI Structural Journal,Vol.92,NO.4,
    July-August 1995,pp.412-418.
    【26 】Xiao,Y.and Yun,H.W.“Experimental Studies on Full-Scale
    High-Strength Concrete Columns.”ACI Structural Journal,
    Vol.99,No.2,March-April 2002.pp.199-207.
    【27 】翁正強、廖慧明、張荻薇、陳誠直,「鋼骨鋼筋混凝土結構 (SRC )
    設規範與解說研究」,內政部建築研究所專題研究計畫成果報告,民
    國八十六年六月,台北。
    【28 】連陽、蔡克銓,「鋼骨鋼筋混凝土柱軸向載重行為研究」,國立
    台灣大學土木工程學系,民國八十四年六月。
    【29 】王慶雲、許協隆,「應用高強度混凝土之鋼骨鋼筋混凝土耐震
    行為」,國立中央大學土木工程學系,民國九十年十二月。

    QR CODE
    :::