跳到主要內容

簡易檢索 / 詳目顯示

研究生: 簡戩
Chien Chien
論文名稱: 以溶凝膠法製作摻錫氧化鐵薄膜並研究其 在光電分解水之應用
On the fabrication of Sn-doped Fe2O3 thin films by sol-gel process and their application to photoelectrochemical water splitting
指導教授: 林景崎
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 98
中文關鍵詞: 光電化學法溶膠凝膠法氧化鐵薄膜錫摻雜二次退火
相關次數: 點閱:13下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文於披覆摻氟氧化錫(F-doped SnO2, FTO)玻璃基板上,以溶凝膠法搭配旋轉塗佈製程成長氧化鐵薄膜,並探討其應用於光電化學分解水產氫之功能。研究內容在於改變前驅物中螯合劑(polyvinylpyrrolidone, PVP)之濃度、旋轉塗佈層數製作多層氧化鐵薄膜,進而施以二次熱處理研究錫自FTO擴散至氧化鐵薄膜之情形,探討此多層膜氧化鐵之晶體結構、光學性質和光電化學特性。結果顯示: 上述製程所得之多層氧化鐵薄膜,經掃描式電子顯微鏡(SEM)觀察到具有多孔表面之結構;經X光繞射分析(XRD)及拉曼(Raman)光譜分析得知: 此多層氧化鐵薄膜經550 ℃退火2小時後,皆呈現為多晶赤鐵礦(α-Fe2O3, hematite)且未出現二次相;經偏壓0.6 V (vs. SCE)光電化學測試結果顯示: 當螯合劑濃度與鐵之比例為2 (PVP/Fe = 2) ,且經旋轉塗佈8層之薄膜試片較其他層數薄膜具有較高之光電流(0.015 mA/cm2)。若此經550 ℃退火之8層薄膜再經750℃二次退火之試片,偵測其光電流,發現增高至0.03 mA/cm2,究其原因:係由錫離子自FTO基板擴散至氧化鐵薄膜中,提高其載子濃度所致。
    為了解錫離子之作用,故意製作錫摻雜自氧化鐵薄膜。製程如同上述,僅在前驅溶液中添加含二價及四價之氯化錫溶液來造成薄膜摻雜。在2.5、5、7.5及10 at.% 四種摻錫氧化鐵薄膜中,經550 ℃退火2小時後,含7.5 at.%之錫摻雜薄膜測得最佳之光電流密度(0.023 mA/cm2 bias 0.6 V vs. SCE);以X光光電子能譜儀(XPS)分析可得知:無論摻雜二價或四價錫離子,薄膜在經過退火後均已轉變成四價錫離子之摻雜。


    In this study, the sol-gel and spin coating methods are used to fabricate α-Fe2O3-based thin films on fluorine-doped SnO2 (FTO) glass substrates which is used as a photoelectrode for photoelectrochemical (PEC) water splitting. In the first part, effects of polyvinylpyrrolidone (PVP) concentrations and spin-coating times on the microstructural, morphological, optical and electrochemical and PEC properties of pure α-Fe2O3 thin films are investigated. In the second part, we attempted to prepare Sn-doped α-Fe2O3 thin films for PEC water splitting via two types of impurity-doping (i.e., re-annealed at higher temperature or directly added tin chloride to our precursor solutions). The results from scanning electron microscope showed that the pure α-Fe2O3 thin films revealed a porous films on the surface of sample. After annealing at 550 oC in air ambient, all samples belonged polycrystalline hematite structure and no secondary phase via X-ray diffraction patterns and Raman spectra. From PEC performance, the sample deposited via PVP/Fe concentration ratio of 2 and spin-coating times of 8 times which has a higher photocurrent of 0.015 mA/cm2 than other samples. In the section of Sn-doping, we found that the specimen with re-annealing at 750 oC has a better PEC response due to the high temperature of re-annealing allowed the tin ion diffused from the substrate into iron oxide crystalline which increased the carrier concentration leading a higher PEC performance. On the other hand, we found that the 7.5% Sn-doped α-Fe2O3 thin films has a higher PEC response than other samples which prepared via directly added tin chloride to our precursor solutions. It is noticed that no matter whether added divalent or tetravalent tin ion, after annealing, they all became tetravalent tin ion and bonding with iron which were analyzed by X-ray photoelectron spectroscopy.

    目錄 中文摘要……………………………………………………………….v Abstract………………………………………………………………vii 致謝………………………………………………………………….viii 目錄……………………………………………………………………ix 表目錄……………………………………………………………….xiii 圖目錄……………………………………………………………… xiv 第一章、 緒論 1 1-1 前言 1 1-2 研究動機 2 1-3 研究目的 4 第二章、研究理論與文獻回顧 5 2-1 半導體 5 2-2 光觸媒 6 2-3 光電化學水分解 8 2-4 影響光催化之因素 9 2-5 氧化鐵光觸媒 11 2-6 溶膠凝膠 13 2-7 文獻整理 15 第三章、 實驗方法與步驟 18 3-1 實驗規劃 18 3-2 實驗藥品 18 3-3 實驗儀器設備 19 3-3-1 實驗設備 19 3-3-2 分析儀器 20 3-4 實驗流程 21 3-5 光陽極製備 21 3-5-1 基材前處理 21 3-5-2 前驅物調配 22 3-5-3 旋轉塗佈 22 3-5-4 熱處理 23 3-5-5 電極封裝 24 3-6 材料分析 24 3-6-1 X-ray 繞射儀 25 3-6-2 場發射掃描式電子顯微鏡 26 3-6-3 拉曼光譜分析儀 26 3-6-4 X 射線光電子能譜儀(X-ray photoelectron spectroscopy, XPS) 27 3-6-5 紫外-可見光光譜儀 (UV -Visible Spectrophotometer) 27 3-6-6 恆電位儀 28 第四章、 實驗結果 30 4-1氧化鐵薄膜 31 4-1-1 螯和劑濃度對氧化鐵的影響 31 4-1-2 膜厚對氧化鐵的影響 34 4-2 非蓄意掺雜錫對氧化鐵的影響(高溫二次退火) 37 4-2-1 表面形貌與粒徑大小的觀察 38 4-2-2 晶體結構分析 38 4-2-3 紫外光-可見光光譜分析 39 4-2-4 光電化學量測 39 4-3 蓄意掺雜錫對氧化鐵的影響 41 4-3-1 四價錫的摻雜 41 4-3-2 二價錫的摻雜 44 第五章、 討論 47 5-1氧化鐵薄膜 47 5-1-1 螯和劑濃度對氧化鐵的影響 47 5-1-2 膜厚對氧化鐵的影響 49 5-2 非蓄意掺雜錫對氧化鐵的影響(高溫二次退火) 50 5-3蓄意掺雜錫對氧化鐵的影響 53 5-3-1 四價錫的摻雜 53 5-3-2 二價錫的摻雜 54 第六章、 結論 56 第七章、 未來展望 58 參考文獻 59 表目錄 表3- 1實驗藥品 65 圖目錄 圖1- 1本多-藤島效應實驗示意圖 66 圖1- 2太陽光能量分佈示意圖 66 圖1- 3 α-Fe2O3可見光光觸媒可利用之太陽光波長 67 圖2- 1 (a)絕緣體,(b)半導體及(c)導體的能帶圖示 68 圖2- 2光觸媒在物理和化學方面的應用 69 圖2- 3光電化學反應示意圖 69 圖2- 4 光觸媒半導體的能帶間隙 70 圖3- 1超音波震盪器 70 圖3- 2箱型燒結爐 71 圖3- 3旋轉塗佈機 71 圖3- 4實驗流程圖 72 圖3- 5 旋轉塗佈之轉速對時間之關係圖 73 圖3- 6 熱處理昇溫參數 73 圖3- 7光電化學量測系統 74 圖4- 1 不同螯合劑濃度的氧化鐵薄膜之SEM,(a)~(c)分別為PVP/Fe=1.5, PVP/Fe=2, PVP/Fe=2.5在5萬倍率下之圖形 74 圖4- 2 不同螯合劑濃度濃度的氧化鐵薄膜之XRD 75 圖4- 3 不同螯合劑濃度的氧化鐵薄膜之Raman 75 圖4- 4不同螯合劑濃度濃度的氧化鐵薄膜的吸收光譜 76 圖4- 5 不同螯合劑濃度濃度的氧化鐵薄膜的光穿透率 76 圖4- 6不同螯合劑濃度濃度的氧化鐵薄膜的光學能隙 77 圖4- 7 不同螯合劑濃度濃度的氧化鐵薄膜的光電流密度 77 圖4- 8 不同螯合劑濃度濃度的氧化鐵薄膜的交流阻抗 78 圖4- 9塗佈不同層數的氧化鐵薄膜之SEM,(a)~(d)分別為6,8,10,12層在3萬倍率之下的圖形 78 圖4- 10不同塗佈層數的氧化鐵薄膜之橫截面SEM,(a)~(f)分別為4,6,8,10,12層在3萬倍率之下的橫截面圖形 79 圖4- 11不同塗佈層數的氧化鐵薄膜之XRD 79 圖4- 12不同塗佈層數的氧化鐵薄膜之Raman 80 圖4- 13不同塗佈層數的氧化鐵薄膜的吸收光譜 80 圖4- 14不同塗佈層數的氧化鐵薄膜的穿透率 81 圖4- 15不同塗佈層數的氧化鐵薄膜的光學能隙 81 圖4- 16不同塗佈層數的氧化鐵薄膜的光電化學分析 82 圖4- 17不同二次退火溫度的氧化鐵薄膜之SEM 82 圖4- 18不同二次退火溫度的氧化鐵薄膜之XRD 83 圖4- 19 不同二次退火溫度的氧化鐵薄膜之Raman 83 圖4- 20不同二次退火溫度的氧化鐵薄膜之吸收光譜 84 圖4- 21不同二次退火溫度的氧化鐵薄膜之光穿透率 84 圖4- 22不同二次退火溫度的氧化鐵薄膜之光學能隙 85 圖4- 23不同二次退火溫度的氧化鐵薄膜之PEC 85 圖4- 24不同二次退火溫度的氧化鐵薄膜之XPS 86 圖4- 25不同二次退火溫度的氧化鐵薄膜之Mott-Schottky(M-S)分析結果 86 圖4- 26不同二次退火溫度的氧化鐵薄膜之TEM 87 圖4- 27不同二次退火溫度的氧化鐵薄膜之TEM 88 圖4- 28不同四價錫摻雜濃度的氧化鐵薄膜之SEM 88 圖4- 29不同四價錫摻雜濃度的氧化鐵薄膜之XRD 89 圖4- 30不同四價錫摻雜濃度的氧化鐵薄膜之Raman 89 圖4- 32不同四價錫摻雜濃度的氧化鐵薄膜之光穿透率 90 圖4- 33不同四價錫摻雜濃度的氧化鐵薄膜之光學能隙 91 圖4- 34不同四價錫摻雜濃度的氧化鐵薄膜之PEC 91 圖4- 35不同四價錫摻雜濃度的氧化鐵薄膜之Mott-Schottky(M-S)分析 92 圖4- 36不同四價錫摻雜濃度的氧化鐵薄膜之EIS 92 圖4- 37不同四價錫摻雜濃度的氧化鐵薄膜之TEM 93 圖4- 38不同四價錫摻雜濃度的氧化鐵薄膜之TEM 94 圖4- 39不同二價錫摻雜濃度的氧化鐵薄膜之SEM 94 圖4- 44不同二價錫摻雜濃度的氧化鐵薄膜之PEC 97 圖4- 45不同二價錫摻雜濃度的氧化鐵薄膜之EIS 97 圖4- 46不同二價錫摻雜濃度的氧化鐵薄膜之XPS 98

    1. A. Fujishima, K. Honda, "Electrochemical photolysis of water at semiconductor electrode", Nature, Vol. 238, pp. 37, 1972.
    2. J.H. Kennedy, K.W. Frese, Jr, "Photoelectrochemical reduction of aqueous carbon dioxide on P-type gallium phosphide in liquid junction solar cells", Nature, Vol. 257, pp. 115, 1978.
    3. Y. Li , J. Z. Zhang , “Hydrogen generation from photoelectrochemical water splitting based on nanomaterials”, Laser Photonics Review , Vol. 4 , pp. 517, 2010.
    4. D. A. Wheeler , G. Wang , Y. Ling , Y. Li , J. Z. Zhang , “Nanostructured hematite: synthesis, characterization, charge carrier dynamics, and photoelectrochemical properties”, Energy & Environmental Science, Vol. 5 , pp. 6682, 2012.
    5. M. Grätzel, “Photoelectrochemical cells”, Nature , Vol. 414 , pp. 338, 2001.
    6. K. Sivula , F. Le Formal , M. Grätzel , “Solar water splitting: progress using hematite (α-Fe2O3) photoelectrodes”, Chemical & Sustainability , Vol. 4, pp. 432, 2011.
    7. G. Wang, Y. Ling, Y. Li, “Oxygen-deficient metal oxide nanostructures for photoelectrochemical water oxidationand other applications”, Nanoscale, Vol. 4 , pp. 6682, 2012.
    8. T. Bak , J. Nowotny , M. Rekas , C. C. Sorrell , “Photo-electrochemical hydrogen generation from water using solar energy. Materials-related aspects”, International Journal of Hydrogen Energy , Vol. 27, pp. 991, 2002.
    9. G. Wang , Y. Ling , H. Wang , L. Xihong , Y. Li ,” Chemically modified nanostructures for photoelectrochemical water splitting”, Journal of Photochemistry and Photobiology C , Vol. 19 , pp. 35, 2014.
    10. V.R. Satsangi, S. Kumari, A.P. Singh, R. Shrivastav, S. Dass, "Nanostructured materials for photoelectrochemical hydrogen production using sunlight", International Journal of Hydrogen Energy, Vol. 33, pp. 312, 2008.
    11. 吳錦貞,I-III-VI/II-VI 族可見光應答光觸媒材料之光電化學分析與水分解產氫應用,博士論文,國立中正大學化學工程所,民國97年。
    12. 林有銘,無所不在的環境清潔工奈米光觸媒,科學發展,402期, 33頁,民國95年。
    13. 荘浩宇,陳東煌,取之不盡的太陽能光電化學反應,科學發展,437 期,65頁, 民國98年。
    14. A. Kudo, Y. Miseki, "Heterogeneous photocatalyst materials for water splitting," Chemistry Society, Vol. 38, pp. 253, 2009.
    15. T. J. La Tempa, X. Feng, M. Paulose, C. A. Grimes, “Rapid screening of effective dopants for Fe2O3 photocatalysts with scanning electrochemical microscopy and investigation of their photoelectrochemical properties”, The Journal of chemical physics, Vol. 113, pp. 93, 2009.
    16. J. H. Kennedy , M. Anderman , R. Shinar, “Photoactivity of doped α-Fe2O3 electrodes”, J. Electrochemical Society, Vol. 128 , pp. 237, 1981.
    17. B. Klahr , S. Gimenez , F. Fabregat-Santiago , T. Hamann , J. Bisquert , “ Water oxidation at hematite photoelectrodes: The role of surface states”, Journal of the American Chemical Society, Vol. 134 , pp. 294, 2012.
    18. I. Cesar , K. Sivula , A. Kay , R. Zboril , M. Grätzel , “Influence of feature Size, film thickness, and silicon doping on the performance of nanostructured hematite photoanodes for solar water splitting”, Journal Physical Chemical , Vol. 772, pp. 113, 2009 .
    19. Y. Q. Liang , C. S. Enache , R. van de Krol ,” Influence of Si dopant and SnO2 interfacial layer on the structure of the spray-deposited Fe2O3 films”, Chemical Physics Letters , Vol. 479, pp. 86, 2008.
    20. J. A. Glasscock , P. R. F. Barnes , I. C. Plumb , N. Savvides , “Enhancement of Photoelectrochemical Hydrogen Production from Hematite Thin Films by the Introduction of Ti and Si”, The Journal Physical Chemistry, Vol. 16477, pp. 111, 2007.
    21. S. Kumari , A. P. Singh , D. Deva , R. Shrivastav , S. Dass , V. R. Satsangi, “Photoelectrochemical properties of Fe2O3-SnO2 films prepared by sol-gel method”, International Journal of Hydrogen Energy, Vol. 3985, pp. 35, 2010.
    22. A. Pu , J. Deng , M. Li , J. Gao , H. Zhang , Y. Hao , J. Zhong , X. Sun, “Coupling Ti-doping and oxygen vacancies in hematite nanostructures for solar water oxidation with high efficiency”, Journal of Materials Chemistr , Vol. 2491, pp. 2, 2014.
    23. J. Liu , C. Liang , H. Zhang , Z. Tian , S. Zhang, “General strategy for doping impurities (Ge, Si, Mn, Sn, Ti) in hematite nanocrystals”, The Journal Physical Chemistry, Vol.4986 , pp. 116, 2012 .
    24. R. Franking , L. Li , M. A. Lukowski , F. Meng , Y. Tan , R. J. Hamers ,S. Jin , “Facile post-growth doping of nanostructured hematite photoanodes for enhanced photoelectrochemical water oxidation” , Energy & Environmental Science, Vol. 500, pp. 6, 2013.
    25. S. Shen , C. X. Kronawitter , D. A. Wheeler , P. Guo , S. A. Lindley ,J. Jiang , J. Z. Zhang , L. Guo , S. S. Mao, “Physical and photoelectrochemical characterization of Ti-doped hematite photoanodes prepared by solution growth”, Journal of Materials Chemistry, Vol. 14498, pp. 1 , 2013.
    26. J. S. Jang , J. Lee , H. Ye , F. R. F. Fan , A. J. Bard , “Rapid Screening of Effective dopants for Fe2O3 photocatalysts with scanning electrochemical microscopy and investigation of their photoelectrochemical properties”, The Journal Physical Chemistry , Vol. 6719, pp. 113 , 2009.
    27. M. Gaudon , N. Pailhe , J. Majimel , A. Wattiaux , J. Abel , A. Demourgues , “Influence of Sn4+ and Sn4+/Mg2+ doping on structural features and visible absorption properties of α-Fe2O3 hematite”, Journal of Solid State Chemistry, Vol.2101, pp. 183 , 2010 .
    28. V. M. Aroutiounian , V. M. Arakelyan , G. E. Shahnazaryan , H. R. Hovhannisyan , H. Wang , “Photoelectrochemistry of tin-doped iron oxide electrodes”, Solar Energy, Vol. 1369, pp. 81, 2007.
    29. L. Xi , S. Y. Chiam , W. F. Mak , P. D. Tran , J. Barber , S. C. J. Loo , L. H. Wong , “A novel strategy for surface treatment on hematite photoanode for efficient water oxidation”, Chemical Science, Vol. 164, pp. 4, 2013 .
    30. J. S. Jang , K. Y. Yoon , X. Xiao , F. R. F. Fan , A. J. Bard , “Development of a potential Fe2O3-based photocatalyst thin film for water oxidation by scanning electrochemical microscopy: Effects of Ag−Fe2O3 nanocomposite and Sn doping”, Chemistry of Material, Vol. 4803, pp. 21, 2009.
    31. A. B. D. Sartoretti, C. J. Solarska, R. Rutkowska, "Photoelectrochemical oxidation of water at transparent ferric oxide film electrodes.," The Journal of chemical physics, Vol. 109, pp. 13685, 2005.
    32. C. J. Sartoretti , B. D. Alexander , R. Solarska , W. A. Rutkowska ,J. Augustynski , R. Cerny , “Translucent thin film Fe2O3 photoanodes for efficient water splitting by sunlight:  Nanostructure-directing effect of Si-doping”, Journal of the American Chemical Society, Vol. 109 , pp. 13685, 2005 .
    33. X. Z. Li, F. B. Li, “Study of Au/Au3+-TiO2 photocatalysts toward visible photooxidation for water and wastewater treatment”, Environmental Science and Technology, Vol. 35, pp. 2381, 2001.
    34. S. Kim, S. J. Hwang, W. Choi, “Visible light active platinum-ion-doped TiO2 photocatalyst”, The Journal of Physical Chemistry, Vol. 109, pp. 24260, 2005.
    35. A. Kay, I. Cesar, M.Gratzel, “New benchmark for water photooxidation by nanostructured α-Fe2O3 films”, Journal of the American Chemical Society, Vol. 128, pp. 15714, 2006.
    36. M. Rajendran, M. G. Krishna, A .K. Bhattacharya, “Structure and thickness dependent optical properties of nanocrystalling haematite thin films”, International Journal of Modern Physics, Vol. 15, pp. 201, 2001.
    37. V. R. Satsangi, S. Kumari, A. P. Singh, R. Shrivastav, S. Dass, “Nanostructured hematite for photoelectrochemical generation of hydrogen”, International Journal of Hydrogen Energy, Vol. 33, pp. 312, 2008.
    38. C. J. Sartoretti, B. D. Alexander, R. Solarska, I. A. Rutkowska, J. Augustynski, “Photoelectrochemical oxidation of water at transparent ferric oxide film electrodes”, The Journal of Physical Chemistry,Vol. 109, pp. 13685, 2005.
    39. K. S. Alan, Y. S. Hu, A. J. Forman, G. D. Stucky, E. W. McFarland, “ Electrodeposition of α-Fe2O3 doped with Mo or Cr as photoanodes for photocatalytic”, Journal of Physical Chemistry, Vol. 112, pp. 15900, 2008.
    40. Y. S. Hu, K. S. Alan, A. J. Forman, D. Hazen, J. N. Park, E. W. McFarland, “Pt-doped α-Fe2O3 thin films active for photoelectrochemical water splitting”, Chemistry of Materials Science, Vol. 20, pp. 3803, 2008.
    41. M. Rajendran, M. G. Krishna, A. K. Bhattacharya, “Structure and thickness dependent optical properties of nanocrystalling haematite thin films”, International Journal of Modern Physics, Vol. 15, pp. 201, 2001.
    42. N. C. Pramanik, T. I. Bhuiyan, M. Nakanishi, T. Fujii, J. Takada, S. Seok, “Synthesis and characterization of cerium substituted hematite by sol–gel method”, Materials Letters , Vol. 59, pp. 3783, 2006.
    43. W. Luo, T. Yu, Y. Wang, Z. Li, J. Ye, Z. Zou, “Enhanced photocurrent-voltage characteristics of WO3/Fe2O3 nano-electrodes”, Journal of Physics , Applied Physics, Vol. 40, pp. 1091, 2007.
    44. L. S. Flavio, P. L. Kirian, A. P. Nascente, R. L. Edson, “Nanostructured hematite thin films produced by spin-coating deposition solution: application in water splitting”, Solar Energy Materials & Solar Cell, Vol. 93, pp. 362, 2009.
    45. K. Sivula, R. Zboril, F. L. Formal, R. Robert, A. Weidenkaff, J.Tucek, J. Frydrych, M. Gra¨tzel, “Photoelectrochemical water splitting with mesoporous hematite prepared by a solution-based colloidal approach”, Journal of American Chemical Society, Vol. 132, pp. 7436, 2010.
    46. L. Wang, C. Y. Lee, “Influence of annealing temperature on photoelectrochemical water splitting of α-Fe2O3 films prepared by anodic deposition”, Electrochimical Acta , Vol. 91, pp. 307, 2013.
    47. Y. Ling, G. Wang, D. A. Wheeler, J. Z. Zhang, and Y. Li, “Sn-doped hematite nanostructures for photoelectrochemical water splitting”, Nano Letter, Vol. 11, pp. 2119, 2011.
    48. C. D. Bohn, A. K. Agrawal, E. C. Walter, M. D. Vaudin, A. A. Herzing, P. M. Haney, A. A. Talin, V. A. Szalai, “Effect of tin doping on α-Fe2O3 photoanodes for water splitting” The Journal Of physical chemistry, Vol. 116, pp. 15290, 2012.
    49. H. Uchiyama, M. Yukizawa, H. Kozuka, “Photoelectrochemical properties of Fe2O3-SnO2 films prepared by sol-gel method”, The Journal Of physical chemistry, Vol. 115, pp. 7050, 2011.
    50. J. Frydrych, L. Machala J. Tucek, K. Siskova, J. Filip, J. Pechousek, K. Safarova, M. Vondracek, J. H. Seo, O. Schneeweiss, M. Gr€atzel, K. Sivula, R. Zboril, “Facile fabrication of tin-doped hematite photoelectrodes – effect of doping on magnetic properties and performance for light-induced water splitting”, Journal of Materials Chemistry, Vol. 22, pp. 23232, 2012.
    51. Y. Ling, Y. Li, “Review of Sn-doped hematite nanostructures for photoelectrochemical water splitting”, Particle & Particle Systems Characterization, Vol. 31, pp. 1113, 2014.
    52. M. Mohapatra, S. Layek, S. Anand, H. C. Verma, B. K. Mishra, “Structural and magnetic properties of Mg-doped nano-α-Fe2O3 particles synthesized by surfactant mediation–precipitation technique”, Physical Status Solid, Vol. 250, pp. 213, 2013.

    QR CODE
    :::