| 研究生: |
林東明 Dong-Ming Lin |
|---|---|
| 論文名稱: |
異質接面雙極性電晶體大訊號模型建立及光通訊前端電路實作 Direct Extraction of an Empirical Large-Signal Model for Heterojunction Bipolar Transistors and Implementation of Optical Front-End Circuits |
| 指導教授: |
詹益仁
Yi-Jen Chan |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
資訊電機學院 - 電機工程學系 Department of Electrical Engineering |
| 畢業學年度: | 93 |
| 語文別: | 中文 |
| 論文頁數: | 90 |
| 中文關鍵詞: | 轉阻放大器 、異質接面雙極性電晶體 、大訊號模型 、雷射驅動電路 、溫度效應 、光纖通訊 |
| 外文關鍵詞: | large signal model, HBT, temperature effect, optical communication, laser driver, transimpedance amplifier |
| 相關次數: | 點閱:12 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文中,完成一擁有溫度效應 InGaP/GaAs HBT 大訊號模型,利用在不同溫度下量測完成元件直流與交流相關參數萃取,使用 CW 量測方式,將熱電阻萃取出,加以描述元件自我加熱現象。並在真空液態氮環境中,量測與驗證元件小訊號與功率特性在不同溫度下(-40℃~85℃)。為了彌補元件模型在高頻雜訊不足,本論文將利用 SDD 與元件物理特性加以描述雜訊特性完成雜訊模型。
接著利用 InGaP/GaAs HBT 完成光通訊前端電路,傳送端雷射驅動器擁有高輸出調變電流與高電壓振幅將可以分別使用直接調變方式與間接調變方式驅動雷射二極體與光電調變器。接收端,轉阻放大器利用各級間不匹配與主動式回授增強頻寬使其符合 10 Gb/s 光通訊應用。
In this thesis, temperature dependence of InGaP/GaAs HBT large signal model was implemented, and the parameters about DC and AC of this device were further extracted under different temperatures. The thermal resistance was extracted by CW measurement to define self-heating phenomenon for HBT. Otherwise, small signal and power characteristic of device were derived and measured under different temperatures from 85℃ to -40℃ at vacuum LiN2 environment. In order to improve the disadvantage, which VBIC model described high frequency noise, AgilentTM ADS symbolically defined devices and physical characteristic are used.
However, InGaP/GaAs HBT technology was used(fabricated) to implement optical front-end circuits. Laser driver in the transmitter has the characteristics of high output voltage swing and high output modulated current, which can drive directly laser diode or indirectly modulator(EAM). In the receiver, mismatch technology and active feedback were utilized for the transimpedance amplifier to enhance bandwidth and it is conformed to 10 Gb/s optical communication application.
[1] Xiaochong Cao J. McMachen, K. Stiles, P. Layman, Jiou, Adelmo Ortiz-Conde, and S. Moinian.” Comparison of the New VBIC and Conventional Gummel-Poon Bipolar Transistor Models,” IEEE Trans. Electron Devices,Vol. 47, No.2, PP427-433, February 2000.
[2] Colin C. McAndrew, Jerold A. Seitchik, Derek F. Bowers, Mark Dunn, Mark Foisy, Ian Getreu, Marc McSwain, Shahriar Moinian, James Parker, David J. Roulston, Michael Schroter, Pual van Wijnen, and Lawrence F. Wagner,” VBIC95, The Vertical Bipolar Inter-Company Model,” IEEE J. Solid-State Circuits, Vol. 31, No. 10, PP1476-1482, October 1996.
[3] H. K. Gummel and H. C. Poon, “ An integrated charge control model of bipolar transistors,” Bell Syst. Tech. J., Vol. 49, PP827-852, May 1970.
[4] Mohammad Sotoodeh, Lucia Sozzi, Alessandro Vinay, A.H. Khalid, Zhirun Hu, Ali A. Rezazadeh,and Roberto Menozzi,” Stepping Toward Standard Methods of Small-Signal Parameter Extraction for HBT’s,” IEEE Trans. Electron Devices, Vol.47, No.6, PP1139-1151, June 2000.
[5] W. Liu, “ Handbook of Ⅲ-Ⅴ Heterojunction Bipolar Transistor,” Willy, New York, 1986
[6] X. Cao, J. McMacken, K. Stiles, P. Layman, J. J. Liou, A. Sun,and S. Moinian,” Parameter Extraction and Optimal for New Industry Standard VBIC Model,” International Conference on Advanced Semiconductor Devices and Microsystems, Smolenice Castle, Slovakia, 5-7, PP107-115 October 1998.
[7] “ High-Frequency Model Tutorial,” Vol.1. ICCAP manual.
[8] Gobert, Y., Tasker, P. J., Bachem,and K. H.,” A physical, yet simple, small-signal equivalent circuit for the heterojunction bipolar transistor microwave theory and techniques,” IEEE Trans. Microwave Theory Tech, Vol. 45, No. 1, PP.149-153, Jan 1997.
[9] M. Kahn, S. Blayac, M. Riet, Ph. Berdaguer, V. Dhalliuin, F. Alexandre,and J. Godin,” Measurement of Base and Collector Transit Times in Thin-Base InGaAs/Inp HBT,” IEEE Electron Devices Lett. ,Vol. 24, No. 7, PP430-432, July 2003.
[10] S. V. Cherepko and J. C. M. Hwang, “ VBIC Model Application and Extraction Procedure for InGaP/GaAs HBT,” Proceeding of APMC 2001, PP716-721.
[11] C. T. Kirk, Jr., “ A Theory of Transistor Cutoff Frequency(fT) Falloff at High Current Densities,” IRE Trans. Electron Devices 19, PP.164-174 1962.
[12] Jianjun Gao, Xiuping Li, Lin Jia, Hong Wang, and Georg Boeck,” Direct Extraction of InP HBT Noise Parameters Based on Noise-Figure Measurement System,” IEEE Trans. Microwave Theory Tech, Vol. 53, No.1, PP330-335, January 2005.
[13] Qian Cai, Jason Gerber, Ulrich L. Rohde, and Tom Daniel, “ HBT High-Frequency Modeling and Integrated Parameter Extraction,” IEEE Trans. Microwave Theory Tech , Vol. 45, No. 12, PP2493-2502, December 1997.
[14] R. J. Hawkins, “ Limitations of Nielsen’s and Related Noise Equations Applied Microwave Bipolar Transistors, and a New Expression for the Frequency and Current Dependent Noise figure”, Solid-State Electron, 20, PP.191-196, 1977.
[15] A. Issaoun, D. Dousset, A. B. Kouki,and F. M. Ghannouchi, “ A Novel Temperature-Dependent Gummel-Poon Based Large Signal For Accurate Modeling of Heterojunction Bipolar Transistors,” Electrical and Computer Engineering, Canadian Conference on Vol. 2-5, PP.27-30 2004.
[16] A. Issaoun, A. B. Kouki,and F. M. Ghannouchi, “ Symbolically Defined Empirical Large-Signal Model for HBTs Compared to the Gummel-Poon Model,” Electrical and Computer Engineering, Canadian Conference on Vol. 2-5, PP.31-34, 2004.
[17] Hyun-Min Park, Songcheol Hong, “ A Novel Temperature-Dependent Large-Signal Model of Heterojunction Bipolar Transistor With a Unified Approach for Self-Heating and Ambient Temperature Effects,” IEEE Trans. Electron Devices, Vol. 49, No. 12, PP.2009-2106, December 2002.
[18] Dale E. Dawson, Aditya K. Gupta,and Mike L. Salib, “ CW Measurement of HBT Thermal Resistance,” IEEE Trans. Electron Devices, Vol. 39. No. 10. PP.2235-2239, October 1992.
[19] Steve P. Marsh, “Direct extraction technique to derive the junction temperature of HBT''s under high self-heating bias conditions,” IEEE Trans Electron Devices, Vol. 47, No. 2, PP.288-291, February 2000.
[20] Frank Schwierz, and Juin J. Liou, “ Modern Microwave Transistors Theory, Design, and Performance,” Willy, 2003.
[21] David A. Ahmari, Gopal Raghavan, Quesnell J. Hartmann, Michael L. Hattendorf, Milton Feng, and Gregory E. Stillman, “ Temperature Dependence of InGaP/GaAs Heterojunciton Bipolar Transistor DC and Small-Signal Behavior,” IEEE Trans. Electron Devices, Vol. 46, No. 4, PP.634-640, April 1999.
[22] Ce-Jun Wei, James C. M. Hwang, Wu-Jing Ho,and J. Aiden Higgins, “ Large-Signal Modeling of Self-Heating, Collector Transit-Time, and RF-Breakdown Effects in Power HBT’s,” IEEE Trans. Microwave Theory Tech, Vol. 44, No. 12, PP.2641-2647, December 1996.
[23]“DWDM Performance and Conformance Test Primer”, Application Note of Tektronix, 2001.
[24] Gerd Keiser, “ Optical Fiber Communications,” McGraw Hill, 2000.
[25] “Accurately Estimating Optical Receiver Sensitivity”, Application Noted of MAXIM, 2001.
[26] Behzad Razavi, “ Design of Integrated Circuits for Optical Communications,” McGraw Hill, 2002.
[27] Jesper Riish, “ 2.5 Gb/s Laser Driver GaAs IC,” J. Lightwave Tech, Vol. 11 No. 9, PP.1014-1021, Sep. 1994.
[28] “ Interfacing Maxim Laser driver with Laser Diode”, Application Note of Maxim, 2000.
[29] H. M. Rein, and M. Moller, “ Design Considerations for Very-High-Speed Si-Bipolar IC’s Operating up to 50 Gb/s,” IEEE J. Solid-State Circuits, Vol. 31, No. 8, PP.1076-1087, August 1996.
[30] H. M. Rein , R. Schmid, P Weger, T. Smith, T. Herzog,and R. Lachner, “ A Versatile Si-Bipolar Driver Circuit with High Output Voltage Swing for External and Direct Laser Modulation in 10 Gb/s Optical-Fiber Links,” IEEE J. Solid-State Circuits, Vol. 29, No. 9, PP.1014-1021, September 1994.
[31] M. Moller, H. M. Rein,and H. Wernz, “ 13 Gb/s Si-Bipolar AGC Amplifier IC with High Gain and Wide Dynamic Range for Optical-Fiber Receivers,” IEEE J. Solid-State Circuits, Vol. 29, No. 7, PP.815-822, July 1994.
[32] E. M. Cherry and D. E. Hooper, “ The design of wide-band transistor feedback amplifier,” Proc. IEEE, Vol. 110, PP.375-389, Feb 1963.
[33] Chris D. Holdenried, James W. Haslett,and Michael W. Lynch, “ Analysis and Design of HBT Cherry-Hooper Amplifiers With Emitter-Follower Feedback for Optical Communications,” IEEE J. Solid-State Circuits, Vol. 39, No.11, PP.1959-1967, November 2004.