跳到主要內容

簡易檢索 / 詳目顯示

研究生: 黃才羽
Tsai-Yu Huang
論文名稱: 評估土壤液化最佳地動強度量值
指導教授: 王瑞斌
Jui-Pin Wang
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 111
中文關鍵詞: 土壤液化地動強度量值DEEPSOI離心模型地盤反應分析
外文關鍵詞: soil liquefaction, ground motion intensity measures, DEEPSOIL, centrifuge modeling, site response analysis
相關次數: 點閱:12下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 台灣地理位置位於板塊交界帶,造就地震頻繁的發生,當地震時飽和砂土層受地震力作用激發超額孔隙水壓,使得土壤失去應有強度進而引發土壤液化,造成鄰近建物受損。近年來評估土讓液化的方法非常多種,其中超額孔隙水壓比(𝑟𝑢)為經常作為判斷土壤液化的指標之一。
    地動強度量值為描述地震時地表運動之特性,依據定義的不同,因此具有許多不同特性的強度量值,本研究使用七組地動強度量值結合加速度門檻值的概念進行計算,因此一共具有90個強度量值作為參賽者,探討何種地動強度量值與超額孔隙水壓比關係最佳。
    本研究利用中央大學地工離心機與振動台於60g重力場下進行試驗,模擬18m自由場飽和砂土層受震行為,並以1-D地盤反應分析軟體DEEPSIOL進行驗證,結果顯示,DEEPSOIL模擬的超額孔隙水壓比與離心試驗結果相似,因此可以判斷DEEPSOIL模擬之結果具有一定的參考價值。
    由強震測站場址工程地質資料庫(EGDT)中取得高雄9個測站真實土層資料,以DEEPSOIL建立土層並使用100筆振動事件進行地盤反應分析,針對其超額孔隙水壓比之結果,與90個地動強度量值進行比較,結果顯示,CAV7 與孔隙水壓激發關聯性最佳,PGA 關聯性則是最低。


    This study investigated the relationship between pore water excitation in soil and a number of different ground motion intensity measures (e.g., PGA). The calculation of
    pore pressure in soil was on the basis of using DEEPSOIL, a computer program for ground response analysis. In this investigation, a centrifuge test was conducted for verifying the DEEPSOIL computation, showing that the measured pore pressure from the centrifuge test was close to the computation from DEEPSOIL.
    This study shows that the correlation between pore pressure excitation in soil and PGA was poor. By contrast, pore pressure excitation in soil had a stronger correlation with cumulative absolute velocity (CAV) of earthquake ground motions. In particular, pore pressure excitation in soil had the best correlation with CAV7, inferring that low amplitudes of ground motions would not induce pore pressure excitation in soil.

    摘要 i Abstract ii 致謝 iii 目錄 iv 圖目錄 vii 表目錄 x 第一章 緒論 1 1-1 研究動機 1 1-2 研究目的 2 1-3 論文架構 2 第二章 文獻回顧 3 2-1 強度量值 (Intensity Measure, IM) 3 2-2 累積絕對速度 (Cumulative Absolute Velocity, CAV) 3 2-2-1 具有加速度門檻值的累積絕對速度 (CAVthreshold) 4 2-2-2 CAV相關研究 6 2-3 Newmark位移法 6 2-4 地震延時 (Bracketed Duration, BD) 8 2-5 愛氏震度 (Arias Intensity, Ia) 8 2-6 一維地盤反應分析 (1-D site response analysis) 9 2-7 超額孔隙水壓比 (Excess Pore Water Pressure Ratio, ru) 12 2-8 一維地盤反應分析程式DEEPSOIL 13 2-8-1 土壤非線性本構模型 (constitutive model) 13 2-9 離心模型原理 15 2-9-1 離心模型相似律 16 第三章 研究方法 19 3-1 物理模型試驗 19 3-1-1 地工離心機 19 3-1-2 離心振動台 20 3-1-2 試驗土樣與基本性質 21 3-1-3 資料擷取系統 22 3-1-4 積層版試驗箱 (Laminar box) 22 3-1-5 移動式霣降設備 24 3-1-6 感測器 25 3-1-7 模型製作及試體準備 27 3-1-8 砂土試體飽和 30 3-2 數值模擬 31 3-2-1 DEEPSOIL模型參數設置 31 3-2-2 土壤動態參考曲線擬合 33 3-2-3 土壤孔隙水壓力生成模型 36 第四章 離心試驗與數值模擬結果與分析 38 4-1 離心試驗規劃 38 4-2 離心試驗結果 39 4-3 離心試驗在數值模擬中參數之設定 47 4-3-1 土層基本參數設定 47 4-3-2 土層的剪力波速估算 48 4-3-3 主要輸入參數 49 4-4 離心試驗與數值模擬結果與分析 52 第五章 地動強度量值與超額孔隙水壓比之關聯性 63 5-1 場址介紹 63 5-2 場址參數之設置 64 5-2-1 經驗式推估土壤性質 69 5-3 地動強度量值 71 5-4 強度量值與超額孔隙水壓比之關係 73 5-5 排名結果 83 第六章 結論與建議 94 6-1 結論 94 6-2 建議 95 參考文獻 96

    [1] 林宜嫻,「九二一集集大地震序列各地累積絕對速度值 (CAV) 之研究」,國立中央大學,碩士論文,桃園 (2002)。
    [2] 江沛恩,「台灣累積絕對速度 (CAV) 地震危害度分析」,國立中央大學,碩士論文,桃園 (2019)。
    [3] J. P. Wang, Y. Xu, H. K. Chen, Y. M. Wu, “CAV site-effect assessment: A case study of Taipei Basin”, Soil Dynamics and Earthquake Engineering, Vol. 108, pp. 142-149, (2018).
    [4] 謝寶珊,「臺灣地區愛氏震度衰減式之研究」,國立中央大學,碩士論文, 桃園 (2008)。
    [5] Danciua, L. and Tselentis, G. A. “Engineering ground-motion parameters attenuation relationships for Greece”, Bulletin of the Seismological Society of America, Vol. 97 No. 1B, pp. 162-183, (2007).
    [6] Kramer, S. L. and Mitchell, R. A. “Ground motion intensity measures for liquefaction hazard evaluation”, Earthquake Spectra, Vol. 22 No. 2, pp. 413-438, (2006).
    [7] Bolt, B.A. “Duration of strong ground motions”, Fifth World Conference on Earthquake Engineering, Rome, 1304-1313, (1973).
    [8] 張黃昇,「考慮土壤強度之非線性地盤反應分析」,國立中興大學,碩士論文,臺中 (2017)。
    [9] Hashash, Y. M. A., Musgrove, M. I., Harmon, J. A., Ilhan, O., Groholski, D. R., Phillips, C. A. and Park, D. (2017) “DEEPSOIL 7.0, User Manual”.
    [10] Groholski, D. R., Hashash, Y. M. A., Kim, B. Musgrove, M. Harmon, J. and Stewart, J. P. “Simplified model for small-strain nonlinearity and strength in 1-D seismic site response analysis”, Journal of Geotechnical and Geoenvironmental Engineering., Vol.142, No.9, (2016).
    [11] Hashash, Y. M. A., Dashti, S., Romero, M. I., Ghayoomi, M. and Musgrove, M. “Evaluation of 1-D seismic site response modeling of sand using centrifuge experiments”, Soil Dynamics and Earthquake Engineering, Vol. 78, pp. 19-31, (2015).
    [12] Mei, X., Olson, S. M., Hashash, Y. M. A. “Empirical porewater pressure generation model parameters in 1-D seismic site response analysis.” Soil Dynamics and Earthquake Engineering, Vol. 114, pp. 563-567, (2018).
    [13] Mei, X., Olson, S. M. and Hashash, Y. M. A. “Evaluation of a simplified soil constitutive model considering implied strength and pore-water pressure generation for 1-D seismic site response.” Canadian Geotechnical Journal, Vol. 57 No. 7, pp. 974-991, (2020).
    [14] Groholski, D. R., Hashash, Y. M. A., Musgrove, M., Harmon, J., Kim, B. “Evaluation of 1-D Non-linearSite Response Analysis using a General Quadratic/Hyperbolic Strength-Controlled Constitutive Model”, In Proceedings of the 6th International Conference on Earthquake Geotechnical Engineering, Christchurch, New Zealand, 1-4 November 2015.
    [15] 楊子霈,「以動態離心模型試驗模擬不同型式基礎建築物於液化地盤之受震反應」,國立中央大學,碩士論文,桃園 (2013)。
    [16] 鄺柏軒,「利用動態離心模型試驗模擬砂土層之剪應力與剪應變關係」,國立中央大學,碩士論文,桃園 (2010)。
    [17] 洪晨訓,「以台灣地震開發的新地動數據庫」,國立中央大學,碩士論文,桃園 (2020) 。
    [18] 王春煌、郭漢興、王如龍,「標準貫入試驗打擊能量差異性探討」,地工技術雜誌,第16期,第14-22頁, (1986)。
    [19] 郭俊翔、 溫國樑 、謝宏灝、林哲民、張道明 ,2011,「 近地表剪力波速性質之研究」, 國家地震工程研究中心, NCREE-11-022 ,共 82 頁。
    [20] 強震測站工程地質資料庫 (EGDT), http://egdt.ncree.org.tw/。

    QR CODE
    :::