跳到主要內容

簡易檢索 / 詳目顯示

研究生: 蔡惟旭
Wei-Xu Cai
論文名稱: 以深度學習結合計算流體力學 量測液體密度、黏度與表面張力係數
指導教授: 鍾志昂
Chih-Ang Chung
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 142
中文關鍵詞: 密度黏度表面張力係數排液容器法深度學習
外文關鍵詞: density, viscosity, surface tension coefficient, Draining Vessel Method, deep learning
相關次數: 點閱:15下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 當今流體密度、黏度與表面張力量測方法大多只能一次量測單一物性且對於
    待測液體有嚴格的溫度範圍限制,還有複雜、精密設備使量測成本難以降低。排液容
    器法為基礎以容器盛裝一靜止流體並由容器底部的孔口排出,量測出口隨時間或隨高
    度頭的質量流率數據作為流動特徵,其優勢為不論在冷、熱流場都能有高度的適應
    性,在實驗操作簡單能同時量測三種流體物性,且設備結構簡單和低維護成本。
    本研究捨棄了過往排液容器法中的修正排放係數或是初始猜測值,避免了排放係
    數涵蓋物性範圍受限於實驗或是決定初始猜測的問題,改以深度學習作為回歸的演算
    法。本文使用 COMSOL Multiphysics 商用軟體建立一個接近現實排液容器法實驗模型
    的計算流體力學模型,產生大量不同流體的流動特徵數據作為回歸資料的基礎,再運
    用 TensorFlow 深度學習對繁多流動特徵進行整理並建立回歸模型,省去了實驗量測資
    料轉換為目標物性反覆迭代的計算過程,快速地從質量流率資料經由深度學習模型直
    接算出目標物性預測值。
    以甘油水溶液與丙二醇水溶液對最終預測模型進行驗證,密度由實驗資料得到的
    預測值平均絕對誤差為 7.21kg/m3,平均相對誤差為 0.66%,黏度由實驗資料得到的預
    測值平均絕對誤差為 0.215cP,平均相對誤差為 6.03%,在表面張力係數由實驗資料得
    到的預測結果,其平均絕對誤差為 24.27mN/m,平均相對誤差為 42.98%。對比使用模
    擬正算的質量流率作為輸入資料得到的預測值之平均絕對誤差為 1.52mN/m,平均相對
    誤差為 3.16%,由此可知此方法在量測密度與黏度的可靠度,然而在表面張力係數的
    預測上僅在理論上可使用質量流率回歸,尚無法在現實的實驗中執行。未來想要改良
    此量測方法,必須要盡可能縮小模擬與實驗資料的誤差才能將此量測方法推向更穩定
    更精確度的表現,並實現量測表面張力係數在實務上的應用。


    Most of the measuring methods for fluid density, viscosity and surface tension
    coefficient nowadays can only measure one single physical property at one time and have
    strict restriction of fluid temperature range. In addition, the cost of measurement is difficultly
    reduced resulting in the complex and sophisticated equipment. Based on Draining Vessel
    Method, a stationary fluid is contained in a vessel and discharged from the orifice of the
    bottom of vessel. Make the mass flow rate over time or head measured from outlet as flowing
    feature. The advantage of this method is high adaptability in cold or hot flow field.
    Furthermore, it allows measuring three kinds of fluid physical property at one operation of
    experiment with simple equipment and low maintaining cost.
    In this study, we abandon the discharging coefficient and initial guess value in previous
    research of Draining Vessel Method to avoid the problem owing to lack of physical property
    range covered by experiment or the decision of initial guess value. We apply the deep learning
    as the algorithm of regression. With the CFD simulation software (COMSOL Multiphysics),
    we establish a model of draining vessel that is close to reality and generate a large number of
    flow feature data of different fluids as the basis for the regression data. Through deep
    learning, various flow features are sorted out and the regression model are established. It
    saves the iterative calculation process during converting the experiment measurement data to
    target physical property. The mass flow rates are rapidly figured out predicted target value
    through the deep learning model directly.
    We verify the final prediction model with the aqueous glycerol and aqueous propylene
    glycol. The mean absolute error of prediction of density obtained from experiment data is
    7.21kg/m3
    , and the mean relative error is 0.66%. The mean absolute error of prediction of
    viscosity obtained from experiment data is 0.215cP, and the mean relative error is 6.03%. In
    the prediction result of surface tension coefficient obtained from experiment data, its mean
    iii
    absolute error 24.27mN/m and its mean relative error is 42.98%, while the mean absolute
    error is 1.52mN/m, and the mean relative error is 3.16% with the prediction obtained from
    using the simulated mass flow rate the as input data. This method is reliable in measuring
    density and viscosity, but it hasn’t been able to measure surface tension coefficient in real
    experiment. If we want to improve this measurement method in the future, it is necessary to
    reduce error between the simulation and experiment as much as possible so as to make this
    method more stable and accurate performance and realize the practical application of the
    measurement of surface tension.

    摘要...i Abstract...ii 圖目錄...vi 表目錄...x 符號表...xi 第一章 緒論...1 1.1 研究動機...1 1.2 文獻回顧...2 1.2.1 已知物性量測方法...2 1.2.2 排液容器法...5 1.2.3 深度學習應用於資料回歸...7 1.3 研究目的...9 第二章 研究方法...11 2.1. 問題描述 ...11 2.2. 物性回歸模型...12 2.2.1 模擬資料訓練模型階段...12 2.2.2 實驗資料驗證模型階段...13 2.3. 深度學習...14 2.3.1 向前傳遞...15 2.3.2 向後傳遞...16 2.3.3 深度學習模型建構與訓練...19 2.4. 數學模型...22 2.5. COMSOL Multiphysics 有限元素法...26 2.6. 資料前處理方法...43 2.6.1 訓練資料前處理...43 2.6.2 實驗資料前處理...46 2.7. 敏感度分析...47 第三章 結果與討論...50 3.1 敏感度分析...50 3.1.1 密度敏感度分析...50 不同密度基準值影響...50 不同黏度基準值影響...51 不同表面張力基準值影響...51 3.1.2 黏度敏感度分析...59 不同密度基準值影響...59 不同黏度基準值影響...59 不同表面張力基準值影響...60 3.1.3 表面張力係數敏感度分析...67 不同密度基準值影響...67 不同黏度基準值影響...67 不同表面張力基準值影響...68 3.1.4 敏感度係數分析總結...75 3.2 物性回歸結果...78 3.2.1 密度回歸結果...78 3.2.2 黏度回歸結果...86 3.2.3 表面張力回歸結果...93 第四章 結論...109 4.1 結論...109 4.2 未來展望...111 參考文獻...112 附錄 ...116

    [ 1 ] Sutterby, J. L. (1976). Density by Archimedes' principle using a top
    loading balance. Journal of Chemical Education, 53(4), p.249
    [ 2 ] Crawley, A. F. and Kiff, D. R. (1971), "Density of liquid bismuth,"
    Metallurgical Transactions B, vol. 2, p. 609–610.
    [ 3 ] Bacchi, O. O. S., REICHARDT, K., Oliveira, J. C. M., & Nielsen, D.
    R. (1998). Gamma-ray beam attenuation as an auxiliary technique
    for the evaluation of the soil water retention curve. Scientia
    Agricola, 55, 498-502.
    [ 4 ] Akpek, A. (2016). Effect of non-uniform temperature field in viscosity
    measurement. Journal of Visualization, 19(2), 291-299.
    [ 5 ] Beavers, G. S., & Joseph, D. D. (1975). The rotating rod
    viscometer. Journal of Fluid Mechanics, 69(3), 475-511.
    [ 6 ] P. d. Noüy, 1925, "An interfacial tensiometer for universal use," The
    Journal of General Physiology, vol. 7, no. 5, pp. 625-631.
    [ 7 ] Wanic, M., Cabaleiro, D., Hamze, S., Fal, J., Estellé, P., & Żyła, G.
    (2020). Surface tension of ethylene glycol-based nanofluids
    containing various types of nitrides. Journal of Thermal Analysis
    and Calorimetry, 139(2), 799-806.
    [ 8 ] Wu, N., Dai, J., & Micale, F. J. (1999). Dynamic surface tension
    measurement with a dynamic Wilhelmy plate technique. Journal of
    colloid and interface science, 215(2), 258-269.
    113
    [ 9 ] Stauffer, C. E. (1965). The measurement of surface tension by the
    pendant drop technique. The journal of physical chemistry, 69(6),
    1933-1938.
    [ 10 ] Williams, A. N., Galbreth, G. G., & Sanders, J. (2018). Accurate
    determination of density, surface tension, and vessel depth using a
    triple bubbler system. Journal of industrial and engineering
    chemistry, 63, 149-156.
    [ 11 ] Roach, S. J., & Henein, H. (2003). A dynamic approach to
    determining the surface tension of a fluid. Canadian metallurgical
    quarterly, 42(2), 175-186.
    [ 12 ] Roach, S. J., & Henein, H. (2005). A new method to dynamically
    measure the surface tension, viscosity, and density of
    melts. Metallurgical and Materials Transactions B, 36(5), 667-676.
    [ 13 ] Rosenblatt, F. (1958). The perceptron: a probabilistic model for
    information storage and organization in the brain. Psychological
    review, 65(6), p.386~407.
    [ 14 ] Werbos, P. (1974). Beyond regression:" new tools for prediction and
    analysis in the behavioral sciences. Ph. D. dissertation, Harvard
    University.
    [ 15 ] Yann,L. C., Matan, O., Boser, B., Denker, J. S., Henderson, D.,
    Howard, R. E., ... & Baird, H. S. (1990, June). Handwritten zip code
    recognition with multilayer networks. In [1990] Proceedings. 10th
    International Conference on Pattern Recognition (Vol. 2, pp. 35-40).
    IEEE.
    [ 16 ] Lee, S. M., Yoon, S. M., & Cho, H. (2017, February). Human activity
    114
    recognition from accelerometer data using Convolutional Neural
    Network. In 2017 ieee international conference on big data and
    smart computing (bigcomp) (pp. 131-134). IEEE.
    [ 17 ] Lim, H., Park, J., & Han, Y. (2017, November). Rare sound event
    detection using 1D convolutional recurrent neural networks.
    In Proceedings of the detection and classification of acoustic scenes
    and events 2017 workshop (pp. 80-84).
    [ 18 ] Chatzis, I., Kuntamukkula, M. S., & Morrow, N. R. (1988). Effect of capillary
    number on the microstructure of residual oil in strongly water-wet sandstones. SPE
    Reservoir Engineering, 3(03), 902-912..
    [ 19 ] Nielsen, M. A. (2015). Neural networks and deep learning (Vol. 25).
    San Francisco, CA, USA: Determination press.
    [ 20 ] Hamilton, W., Ying, Z., & Leskovec, J. (2017). Inductive
    representation learning on large graphs. Advances in neural
    information processing systems, p.30.
    [ 21] Albawi, S., Mohammed, T. A., & Al-Zawi, S. (2017, August).
    Understanding of a convolutional neural network. In 2017
    international conference on engineering and technology (ICET) (pp.
    1-6). Ieee.
    [ 22 ] Hochreiter, S., & Schmidhuber, J. (1997). Long short-term
    memory. Neural computation, 9(8), 1735-1780.
    [ 23 ] Neal, B., Mittal, S., Baratin, A., Tantia, V., Scicluna, M., LacosteJulien, S., & Mitliagkas, I. (2018). A modern take on the biasvariance tradeoff in neural networks.
    [ 24 ] Saltelli, A. (2002). Sensitivity analysis for importance
    115
    assessment. Risk analysis, 22(3), 579-590.
    [ 25 ] GP Association. (1963). Physical properties of glycerine and its
    solutions. Glycerine Producers’ Association.
    [ 26 ] Chang, C. W., Hsiung, T. L., Lui, C. P., & Tu, C. H. (2015).
    Densities, surface tensions, and isobaric vapor–liquid equilibria for
    the mixtures of 2-propanol, water, and 1, 2-propanediol. Fluid Phase
    Equilibria, 389, 28-40.
    [ 27 ] George, J., & Sastry, N. V. (2003). Densities, dynamic viscosities,
    speeds of sound, and relative permittivities for water+ alkanediols
    (propane-1, 2-and-1, 3-diol and butane-1, 2-,-1, 3-,-1, 4-, and-2, 3-
    diol) at different temperatures. Journal of Chemical & Engineering
    Data, 48(6), 1529-1539.
    [ 28 ] Francois Chollet,2018, Deep Learning with Python, Manning
    Publications
    [ 29 ]
    Egry, I. (1993). On the relation between surface tension and viscosity
    for liquid metals. Scripta metallurgica et materialia, 28(10), 1273-
    1276.
    [ 30 ] 翁郡鴻, 以計算流體力學結合排液容器法量測錫液之密度, 黏度
    與表面張力係數. 2019. Master Thesis. National Central University.
    [ 31 ] 李漢祥, 以機器學習結合排液容器法量測液體密度與黏度. 2022.
    Master Thesis. National Central University

    QR CODE
    :::