| 研究生: |
鄭翰翔 Han-Hsiang Cheng |
|---|---|
| 論文名稱: |
白光LED加速老化之光輻射特性之研究 Study of Emission Properties with Acceleration Aging of Phosphor-based White LEDs |
| 指導教授: |
孫慶成
Ching-Cherng Sun 楊宗勳 Tsung-Hsun Yang |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 光電科學與工程學系 Department of Optics and Photonics |
| 論文出版年: | 2014 |
| 畢業學年度: | 102 |
| 語文別: | 中文 |
| 論文頁數: | 80 |
| 中文關鍵詞: | 白光發光二極體 、YAG螢光粉輻射特性 、加速老化 |
| 外文關鍵詞: | White LED, Emission Properties of YAG Phosphor, Acceleration aging |
| 相關次數: | 點閱:10 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文分析了不同藍光波長的晶片搭配YAG螢光粉的LED樣品,在老化過程中輻射特性的變化。在LED的測試中,此研究採用高溫的方式來加速老化,以達在較短時間內觀察其壽命中不同時間點變化之目的。對於頻譜特性的分析,主要的成果分成兩個部分,第一部分,透過LED在其壽命過程中CCT、xy色座標以及u’v’色座標的變化資料,分析出使LED色彩變化穩定最佳的藍光晶片之搭配。此外,透過藍黃光分離並分析,亦可發現在混光機制上,藍光色座標的位移也能對結果造成明顯可觀察的結果,進而影響色彩穩定度的表現;在第二部分中,本研究分析LED頻譜的擬合參數,將其對應到螢光粉的能階狀態。此部分透過Stokes Shift以及4f能階分裂的計算,在比較過去其他研究後,可驗證並找出對應之關聯。其中利用不同溫度的數據變化,可以從高溫的測量資料中找出趨勢,延伸預測出低溫時的Stokes Shift,與文獻中7K的研究結果相仿。
In this thesis, we measured and analyzed several blue LEDs emitting different peak wavelengths with YAG phosphor, and observed the variations in emission properties under specific accelerating condition. In the aging tests of LEDs, severe high temperature condition was applied to accelerate the whole measurement duration. After analyzing spectra of different samples within the aging process, the best choice of blue light chip with YAG phosphor has been decided for stable color performance over the whole lifetime of LEDs. Besides, in the thesis, a fitting model was used to extract the information of energy level from the spectral properties. The results of energy level analysis have been compared with literatures, and show the sufficient correspondences in calculating Stokes shift and 4f splitting to demonstrate the accuracy of the model.
[1] M. R. Krames, O. B. Shchekin, R. Mueller-Mach, G. O. Mueller, L. Zhou, G. Harbers, and M. G. Craford, “Status and future of high-power light-emitting diodes for solid-state lighting,” J. Disp. Technol. 3, 160-175 (2007).
[2] Cree, http://www.cree.com/News-and-Events/Cree-News/Press-Releases/2014/March/ 300LPW-LED-barrier.
[3] A. Zukauskas, M. Shur, and R. Caska, Introduction to Solid-State Lighting (John Wiley & Sons, New York, 2002).
[4] E. F. Schubert and J. K. Kim, “Solid-state light sources getting smart,” Science 308, 1274-1278 (2005).
[5] A. Žukauskas, R. Vaicekauskas, F. Ivanauskas, R. Gaska, and M. Shur, “Optimization of white polychromatic semiconductor lamps,” Appl. Phys. Lett. 80, 234-236 (2002).
[6] J. Y. Tsao, “Solid-state lighting: lamps, chips, and materials for tomorrow,” IEEE Circuits Devices Mag. 20, 28-37 (2004).
[7] S. W. Brown, C. Santana, and G. P. Eppeldauer, “Development of a tunable LED-based colorimetric source,” J. Res. Natl. Inst. Stand. Technol. 107, 363-371 (2002).
[8] H. J. Round, “A note on carborundum,” Electrical world 49, 309 (1907).
[9] N. Holonyak Jr. and S. F. Bevacqua, “Coherent (visible) light emission from Ga (As1− xPx) junctions,” Appl. Phys. Lett. 1, 82-83 (2004).
[10] C. Kuo, R. Fletcher, T. Osentowski, M. Lardizabal, M. Craford, and V. Robbins, “High performance AlGaInP visible light‐emitting diodes,” Appl. Phys. Lett. 57, 2937-2939 (1990).
[11] S. Nakamura, T. Mukai, and M. Senoh, “Candela‐class high‐brightness InGaN/AlGaN double‐heterostructure blue‐light‐emitting diodes,” Appl. Phys. Lett. 64, 1687-1689 (1994).
[12] S. Nakamura, S. Pearton, and G. Fasol, The Blue Laser Diode: The Complete Story, 2nd ed. (Springer, New York, 2000).
[13] S. Nakamura, M. Senoh, N. Iwasa, and S. Nagahama, “High-brightness InGaN blue, green and yellow light-emitting diodes with quantum well structures,” Jpn. J. Appl. Phys. 34, L797-L799 (1995).
[14] S. Nakamura, M. Senoh, and T. Mukai, “High‐power InGaN/GaN double‐heterostructure violet light emitting diodes,” Appl. Phys. Lett. 62, 2390-2392 (1993).
[15] S. Nakamura, M. Senoh, S. I. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, Y. Sugimoto, and H. Kiyoku, “Room‐temperature continuous‐wave operation of InGaN multi‐quantum‐well structure laser diodes,” Appl. Phys. Lett. 69, 4056-4058 (1996).
[16] Y. Shimizu, K. Sakano, and Y. Noguchi, “Light emitting device having a nitride compound semiconductor and a phosphor containing a garnet fluorescent material,” US Patent No. 5,998,925 (1999).
[17] 國立中央大學光電科學與工程學系,光電科技概論,初版,五南圖書出版股份有限公司,台北市,中華民國九十七年
[18] 陳鶴祥,分層雙色白光LED封裝效率及色彩表現之研究,國立中央大學光電科學研究所碩士論文,中華民國一百零一年。
[19] 吳信美,白光發光二極體色彩表現穩定技術之研究,國立中央大學光電科學研究所碩士論文,中華民國一百年。
[20] J. Guild, “The colorimetric properties of the spectrum,” Proc. R. Soc. A 230, 149-187 (1932).
[21] W. D. Wright, “A re-determination of the trichromatic coefficients of the spectral colours,” Trans. Opt. Soc. 30, 141 (1929).
[22] G. Wyszecki and W. S. Stiles, Color Science (Wiley, New York, 1982).
[23] J. Gracia, L. Seijo, Z. Barandiarán, D. Curulla, H. Niemansverdriet, and W. van Gennip, “Ab initio calculations on the local structure and the 4f–5d absorption and emission spectra of Ce3+-doped YAG,” J. Lumines. 128, 1248-1254 (2008).
[24] G. Blasse and A. Bril, “A New Phosphor for Flyting-Spot Cathode-Ray Tubes for Color Television: Yellow-Emitting Y3Al5O12-Ce3+,” Appl. Phys. Lett. 11, 53-55 (1967).
[25] G. Blasse and A. Bril, “Investigation of Some Ce3+‐Activated Phosphors,” J. Chem. Phys. 47, 5139-5145 (1967).
[26] D. J. Robbins, “The effects of crystal field and temperature on the photoluminescence excitation efficiency of Ce3+ in YAG,” J. Electrochem. Soc. 126, 1550-1555 (1979).
[27] D. J. Robbins, B. Cockayne, B. Lent, and J. L. Glasper, “The relationship between concentration and efficiency in rare earth activated phosphors,” J. Electrochem. Soc. 126, 1556-1563 (1979).
[28] D. J. Robbins, B. Cockayne, J. L. Glasper, and B. Lent, “The Temperature Dependence of Rare‐Earth Activated Garnet Phosphors I. Intensity and Lifetime Measurements on Undoped and Ce‐Doped Y3Al5O12,” J. Electrochem. Soc. 126, 1213-1220 (1979).
[29] D. J. Robbins, B. Cockayne, J. L. Glasper, and B. Lent, “The Temperature Dependence of Rare‐Earth Activated Garnet Phosphors II. A Comparative Study of Ce3+, Eu3+, Tb3+, and Gd3+ in Y3Al5O12,” J. Electrochem. Soc. 126, 1221-1228 (1979).
[30] M. Batentschuk, B. Schmitt, J. Schneider, and A. Winnacker, “Color engineering of garnet based phosphors for luminescence conversion light emitting diodes (lucoleds),” Proc. MRS 560, 215 (1999).
[31] V. Bachmann, C. Ronda, and A. Meijerink, “Temperature quenching of yellow Ce3+ luminescence in YAG: Ce,” Chem. Mater. 21, 2077-2084 (2009).
[32] K. Ivanovskikh, J. Ogiegło, A. Zych, C. Ronda, and A. Meijerink, “Luminescence Temperature Quenching for Ce3+ and Pr3+ df Emission in YAG and LuAG,” ECS Journal of Solid State Science and Technology 2, R3148-R3152 (2013).
[33] 劉瑋瑋,白光LED 之螢光粉熱衰探討,國立中央大學光電科學研究所碩士論文,中華民國一百年。
[34] T. Tomiki, H. Akamine, M. Gushiken, Y. Kinjoh, M. Miyazato, T. Miyazato, N. Toyokawa, M. Hiraoka, N. Hirata, Y. Ganaha, and T. Futemma, “Ce3+ centres in Y3Al5O12 (YAG) single crystals,” J. Phys. Soc. Jpn. 60, 2437-2445 (1991).
[35] P. Dorenbos, “The 5d level positions of the trivalent lanthanides in inorganic compounds,” J. Lumines. 91, 155-176 (2000).
[36] A. A. Setlur, A. M. Srivastava, H. A. Comanzo, G. Chandran, H. Aiyer, M. V. Shankar, and S. E. Weaver, “Ce3+-based phosphors for blue LED excitation,” Proc. SPIE 5187, 142-149 (2004).
[37] M. Nazarov, “Luminescence mechanism of highly efficient YAG and TAG phosphors,” Moldavian J. Phys. Sci 4, 247-356 (2005).
[38] Y. Zorenko, V. Gorbenko, I. Konstankevych, A. Voloshinovskii, G. Stryganyuk, V. Mikhailin, V. Kolobanov, and D. Spassky, “Single-crystalline films of Ce-doped YAG and LuAG phosphors: advantages over bulk crystals analogues,” J. Lumin. 114, 85-94 (2005).
[39] K. Jang, “Excitation-Dependent Emissive Properties of Silicate Phosphor for Light Converted LEDs,” J. Korean Phys. Soc. 55, 1587 (2009).
[40] A. Katelnikovas, H. Bettentrup, D. Uhlich, S. Sakirzanovas, T. Jüstel, and A. Kareiva, “Synthesis and optical properties of Ce3+-doped Y3Mg2AlSi2O12 phosphors,” J. Lumines. 129, 1356-1361 (2009).
[41] L. Chen, C. C. Lin, C. W. Yeh, and R. S. Liu, “Light converting inorganic phosphors for white light-emitting diodes,” Materials 3, 2172-2195 (2010).
[42] J. M. Ogiegło, A. Zych, K. V. Ivanovskikh, T. Jüstel, C. R. Ronda, and A. Meijerink, “Luminescence and energy transfer in Lu3Al5O12 scintillators co-doped with Ce3+ and Tb3+,” J. Phys. Chem. A 116, 8464-8474 (2012).
[43] D. A. Neamen and B. Pevzner, Semiconductor Physics and Devices: Basic Principles (McGraw-Hill New York, 2003).
[44] B. E. Saleh and M. C. Teich, Fundamentals of Photonics (Wiley Series in Pure an Applied Optics, 2007).
[45] J. Brody, D. Weiss, and P. Young, “Observing the Maxwell–Boltzmann distribution in LED emission spectra,” Spectrum 1, 7 (2010).
[46] IESNA, LM80-08 Approved Method for Measuring Lumen Maintenance of LED Light Sources (New York, 2008).
[47] D. W. G. Ali, Automic Control (King Saud University, Riyadh, 2002).
[48] 周虹宇,發光二極體發光光譜特性之模型建立與維持穩定,國立中央大學光電科學研究所博士論文,中華民國一百年。
[49] 紀詔元,高功率LED光電熱色特性整合模型之研究,國立中央大學光電科學研究所碩士論文,中華民國一百年。
[50] 唐健碩,高功率LED光電熱色動態行為特性之研究,國立中央大學光電科學研究所碩士論文,中華民國一百零三年。
[51] ENERGYSTAR®, www.energystar.gov.