| 研究生: |
胡道瑋 DAO-WEI HU |
|---|---|
| 論文名稱: |
氧化銦系列透明導電膜製備及其光電性質之研究 The deposition of In-based transparent conductive oxide films by RF magnetron sputtering and the study of the optical-electric properties |
| 指導教授: | 張正陽 |
| 口試委員: | |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
理學院 - 光電科學與工程學系 Department of Optics and Photonics |
| 論文出版年: | 2015 |
| 畢業學年度: | 103 |
| 語文別: | 中文 |
| 論文頁數: | 103 |
| 中文關鍵詞: | 透明導電膜 |
| 相關次數: | 點閱:10 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
氧化銦系列透明導電膜擁有良好導電性及可見光區的高穿透率,廣泛被應用於太陽能電池、觸控式面板及發光二極體等元件上。射頻磁控濺鍍法(RF magnetron sputtering)為目前製備透明導電膜常見方法之一,相較於其他製備方式其擁有沉積快速、低溫及薄膜均勻等特點。本研究利用射頻磁控濺鍍法製備氧化銦錫(ITO)、氧化銦鈦(ITiO)及氧化銦鉬(IMO)三種透明導電膜,並研究調變氬氣流量、射頻功率、製程壓力、氧氣流量與退火溫度等參數對透明導電膜的影響,目標為製備出低片電阻( < 50 Ohm/square)、高載子遷移率( > 40 cm2/Vs)以及在可見光到近紅外光區有高穿透率( > 90 %)的透明導電抗反射膜( 75~80 nm),能應用於矽晶異質接面太陽能電池,以能夠降低電池的串聯電阻以及提高光穿透率,增加電池轉換效率。
研究結果顯示,氧化銦錫展現出低片電阻(30~100 Ohm/square)、高載子遷移率(40~45 cm2/Vs)以及可見光區高穿透率(86~92 %)的特性,氧化銦鉬則可擁有高載子濃度(2E20~4E20 cm-3),而氧化銦鈦在光電性質表現上較為一般。調變氬氣流量與提高射頻功率對透明導電膜的光電性質有顯著的影響,在氬氣流量為60~80 sccm以及射頻功率為250 W的製程條下,氧化銦錫、氧化銦鈦與氧化銦鉬達到最低片電阻分別為70 (Ohm/square)、171 (Ohm/square)與104 (Ohm/square);調變氧氣流量能控制透明導電膜的氧空缺數量,不過對其光電性質影響較不顯著;提高製程壓力會降低靶離子動能,影響薄膜結構且明顯劣化薄膜品質;後退火處理可使原為非晶結構的透明導電膜轉變為多晶結構並降低能帶邊緣缺陷,尤其氧化銦錫在後退火處理後載子濃度得到大幅度的提升使片電阻下降,且可見光區的穿透率從87.3 %提升至92.4 %,本研究在氬氣流量為80 sccm、射頻功率為200 W及退火溫度為500 ℃的製程條件下,可製備片電阻為33 (Ohm/square)及在光波長400 nm-1200 nm的平均穿透率為92.4 %的氧化銦錫(ITO)薄膜。
Indium-based transparent conductive oxide films are widely used in solar cell, touch panel, LED, and other diode elements with superior conductivity and high optical transmittance in visible region. Nowadays, radio-frequency (RF) magnetron sputtering is one common method for preparing a transparent conductive oxide films. Furthermore, compared with other methods, RF magnetron sputtering has several advantages, such as the excellent deposition rates, low temperature, and film uniformity. The indium tin oxide (ITO) thin films, the titanium-doped indium oxide (ITiO) thin films, and the indium molybdenum oxide (IMO) thin films were fabricated by RF magnetron sputtering process. In this study, we modulated the argon flow rate, radio-frequency power, process pressure, oxygen flow rate, and post-annealing temperature to investigate the thin films quality. The target to fabricate the transparent conductive oxide anti-reflection film (75~80 nm) with low sheet resistance ( < 50 Ohm/square), high mobility ( > 40 cm2/Vs), and high transmittance in visible region and near-infrared region that will be applied to amorphous silicon / crystalline silicon heterojunction solar cells. The conversion efficiency of solar cells can be improved by the reduction of series resistance and improvement of light transmittance.
The results of experiments show that indium tin oxide has low sheet resistance (30~100 Ohm/square), high mobility (40~45 cm2/Vs), and high transmittance in visible region (86~92 %). Indium molybdenum oxide has high carrier concentration (2E20~4E20 cm-3). Titanium-doped indium oxide has general optical and electrical properties. It has significant influence on transparent conductive oxide films quality by modulating the argon gas flow rate and increasing the radio-frequency power. Under the condition of argon gas flow rate = 60~80 sccm and radio-frequency power = 250 W, the indium tin oxide, the titanium-doped indium oxide, and the indium molybdenum oxide have the lowest sheet resistance of 70 (Ohm/square), 171 (Ohm/square), and 104 (Ohm/square), respectively. Modulation of oxygen gas flow rate can control the number of oxygen vacancies in films, but it is not obvious to affect the optical and electrical properties of films. In addition, increase process pressure will reduce the kinetic energy of the ions and affect films structure, resulting in deterioration of films quality. Furthermore, post-annealing process can make transparent conductive oxide films transform to crystal structure from amorphous structure, and reduce band edge defects. In particular, post-annealing process can greatly improve carrier concentration and reduce sheet resistance of the indium tin oxide thin films. The post-annealing process can also improve the indium tin oxide thin films transmittance from 87.3 % to 92.4 %. Under the condition of argon flow rate = 80 sccm, radio-frequency power = 200 W, and annealing temperature = 500 ℃, we obtained the low sheet resistance 33 (Ohm/square) and high optical transmittance 92.4 % at 400 nm~1200 nm wavelength of the tin oxide thin film, respectively.
[1] 游鈞傑及王駿翰及簡崇恩,"透明導電膜應用於顯示器上之研究",東南科技大學電子工程系實務專題報告
[2] 李玉華,"透明導電膜及其應用",科儀新知,第12卷第一期,(1990) , pp.94 – 102
[3] S. Calnan, and A.N. Tiwari, "High mobility transparent conducting oxides for thin film solar cells", Thin Solid Films 518 (2010) , pp.1839 – 1849
[4] L.T. Yan, and R.E.I. Schropp, "Changes in the structural and electrical properties of vacuum post-annealed tungsten- and titanium-doped indium oxide films deposited by radio frequency magnetron sputtering", Thin Solid Films, 520 (2012) , pp.2096 – 2101
[5] J. Ma, D.H. Zhang, J.Q. Zhao, C.Y. Tan, and T.L. Yang and H.L. Ma, "Preparation and characterization of ITO films deposited on polyimide by reactive evaporation at low temperature",Applied Surface Science, 151 (1999) pp.239 – 243
[6] C. May, and J. Strumpfel, "ITO coating by magnetron sputtering comparison of properties from DC and MF processing", Thin solid films, Volume 351, pp. 48 – 52, 1999.
[7] W. Wu, B. Chiou, and S. Hsieh, "Effect of sputtering power on the structural and optical properties of RF magnetron sputtered ITO films", Semiconductor Science and Technology, Volume 9, pp. 1242 – 1249, 1994
[8] H. Kobayashi, T. Ishida, K. Nakamura, Y. Nakato, and H. Tsubomura, J. Appl. Phy. 72 (1992) , pp.5228.
[9] I.A. Rauf, and J. Appl. Phys. 79(8) , 15 April (1996) , pp. 4057 – 4065
[10] Y. Djaoued, Vuhong Phong, S. Badilescu, P.V. Ashrit, and Fernand E. Girouard, Vo-Van Truong, Thin Solid Films 293 (1997) , pp. 108 – 112
[11] Swon-soon Kim, Sw-Young Choi, Chan-Gyung Park, and Hyeon-Woo Jin, Thin Solid Films 347 (1999) , pp. 108 – 112
[12] D. Das and R. Banerjee, Thin Solid Films, 147 (1987), pp. 321
[13] R. Teghil, D. Ferro, A. Galasso, A. Giardini, V. Marotta, G.P. Parisi, A. Santagata, and P. Villani, "Femtosecond pulsed laser deposition of nanostructured ITO thin films", Materials Science and Engineering, C, Volume 27, pp. 1034-1037, 2007
[14] F. Hanus, A. Jadin, and L.D. Laude, "Pulsed laser deposition of high quality ITO thin films", Applied Surface Science, Volumes 96 – 98, pp. 807 - 810, 1996
[15] J. Tashiro, A. Sasaki, S. Akiba, S. Satoh, T. Watanabe, H. Funakubo, and M. Yoshimoto, "Room-temperature epitaxial growth of indium tin oxide thin films on Si substrates with an epitaxial CeO2 ultrathin buffer", Thin Solid Films, 415 (2002) pp. 272-275.
[16] R.E.I. Schropp, J.K. Rath, and L.T. Yan, "HIGH MOBILITY TRANSPARENT CONDUCTIVE OXIDE FOR LOW BANDGAP SOLAR CELLS", IEEE, 2011
[17] Xifeng Li, Weina Miao, Qun Zhang, Li Huang, Zhuangjian Zhang, and Zhongyi Hua,"Preparation of molybdenum-doped indium oxide thin films using reactive direct-current magnetron sputtering",Materials Research Society,2005
[18] S. Parthiban , V. Gokulakrishnan, E. Elangovan , G. Gonçalves , K. Ramamurthi , E. Fortunato , and R. Martins, " High mobility and visible–near infrared transparent titanium doped indium oxide thin films produced by spray pyrolysis", Thin Solid Films 524 (2012) , pp. 268 – 271
[19] J. Venables, "Nucleation and Growth of Thin films", Reports on Progress in Physics, Vol. 47, pp. 399 – 459, 1984.
[20] 谷俊能, "ITO在有機發光二極體之應用",工業材料雜誌 188期(2002) pp. 133-136
[21] M. Quass, C. Eggs, and H. Wulff, "Structural studies of ITO thin films with the Rietveld method", Thin Solid Films, 332 (1998) pp. 277 – 281
[22] Joseph Ederth, "Elevtrical Transport in Nanoparticle Thin Films of Gold and Indium Tin Oxide", doctoral degree dissertation, Uppsala University (2003) pp. 4 – 6
[23] P. Nath, and R.F. Bunshah, "Preparation of In2O3 and tin-doped In2O3 films by a novel activated reactive evaporation technique", Thin Solid Films, 69 (1980) pp. 63 – 68
[24] M. Hecq, A. Dubois, and J. V. Cakenberghe, "Etude par diffraction derayons X de films a base d` oxydes d` etain et d` indium", Thin Solid Films, 18 (1973) pp. 117 – 125
[25] M.F.A.M. van Hest, M.S. Dabney, J.D. Perkins, G.S. Ginley, and M.P. Taylor, Appl. Phys. Lett. 87 (2005) 032111
[26] T. Koida, and M. Kondo, J. Appl. Phys. 101 (2007) 0637131
[27] S.J. Wen, G. Campet, J. Portier, G. Couturier, and J.B. Goodenough, Mater. Sci. Eng. B. 14 (1992) , pp. 115
[28] S.J.Wen, G. Couturier, J. Claverie, and P.Hagenmuller, J. Solid State chem. 101 (1992) , pp. 203.
[29] R.K. Gupta, K. Ghosh, S.R. Mishra and P.K. Kahol, "Opto-electrical properties of Ti-doped In2O3 thin films grown by pulsed laser deposition", Applied Surface Science, 253 (2007) pp. 9422 – 9425
[30] C.Warmsingh, Y. Yoshida, D. W. Readey, C. W. Teplin, J. D. Perkins, P. A. Parilla, L. M. Gedvilas, B. M. Keyes, and D. S. Ginley, "High-mobility transparent conducting Mo-doped In2O3 thin films by pulsed laser deposition", Jounrnal of Applied Physics, 95 (2004) pp. 3831 – 3833
[31] M. Yang, X.-L. Yang, H.-X. Chen, J. Shen, and Y.-M. Jiang, "A new transparent conductive thin film In2O3:Mo", Thin Solid Films, 394 (2001) pp. 219 – 223
[32] 楊峻銘, “濺射成長 ITO/金屬/ITO 多層透明導電膜之特性研究", 崑山科技大學電機工程系碩士論文
[33] F. Wu and B. S. Chiou, “Properties of Radio-Frequency Magnetron Sputtered ITO Films without In-Situ Substrate Heating and Post-Deposition Annealing",Thin Solid Films, 247(1994) pp.201.
[34] A.Suzuki, T. Matsushita, T. Aoki, A. Mori, and M. Okuda, “Highly conducting transparent indium tin oxide films prepared by pulsed laser deposition", Thin Solid Films, 411 (2002) pp. 23 – 27
[35] I.Hamberg, C.G. Granqvist, K.F. Berggren, B.E. Sernelius, and L. Engstrom, “Bandgap widening in heavily doped oxide semiconductors used as transparent heat- reflectors", Solar Energy Materials, 12 (1985) pp. 479 – 490
[36] 潘漢昌、蕭銘華、蘇健穎、蕭健男,科儀新知第二十六卷第一期,93年
[37] M. Labrune, "Silicon surface passivation and epitaxial growth on c-Si by low temperature plasma processes for high efficiency solar cells", ParisTech Doctoral thesis in Materials Science (2011).
[38] P. Klement, C. Feser, B. Hanke, K. von Maydell, and C. Agert, "Correlation between optical emission spectroscopy of hydrogen/germane plasma and the Raman crystallinity factor of germanium layers", Appl. Phys. Lett., Vol. 102 (2013).
[39] A. Matsuda, M. Takai, T. Nishimoto, and M. Kondo, "Control of plasma chemistry for preparing highly stabilized amorphous silicon at high growth rate", Sol Energ Mat Sol C, Vol. 78, pp. 3 – 26 (2003).
[40] 曾坤三, “ITO薄膜濺鍍製程最佳化與其不均勻光電特性研究", 國立成功大學機械工程系博士論文
[41] C. Nunes de Carvalho, A. Luis, O. Conde, E. Fortunato, G.Lanareda, and A. Amaral, "Effect of rf power on the properties of ITO thin films deposited by plasma enhanced reactive thermal evaporation on unheated polymer substrates", Journal of Non-Crystalline Solids, 299 – 302 (Part 2) (2002) pp. 1208 – 1212
[42] C. Guillén and J. Herrero, Thin Solids Films 480 (2005) , pp. 129
[43] S. Parthiban , V.Gokulakrishnan , K.Ramamurthi , E.Elangovan , R.Martins , E. Fortunato , and R.Ganesan, "High near-infrared transparent molybdenum-doped indium oxide thin films for nanocrystalline silicon solar cell applications", Solar Energy Materials & Solar Cells 93 (2009) , pp. 92 – 97
[44] A.K. Kulkarni, K.H. Schulz, T.S. Lim, and M. Khan, "Electrical, optical and structural characteristics of indium-tin-oxide thin films deposited on glass and polymer substrates", Thin Solid Films, 308-309 (1997) pp.1 – 7
[45] L.-j. Meng and M.P. dos Santos, "Properties of indium tin oxide (ITO) films prepared by r.f. reactive magnetron sputtering at different pressures", Thin Solid Films, 303 (1997) pp. 151 – 155
[46] M. Sawada, M. Higuchi, S. Kondo, and H. Saka, "Characteristics of indium-tin oxidesilver/indium-tin-oxide sandwich films and their application to simple-matrix liquid-crystal displays", Journal of Applied Physics, 40 (2001) pp. 3332 – 3336
[47] M. H. Yang, J.C. Wen, K.L. Chen, S.Y. Chen and M.S. Leu, Thin Solid Films 484 (2005) , pp. 39.
[48] Woong-Kyo Oh , Shahzada Qamar Hussain , Youn-Jung Lee , Youngseok Lee , Shihyun Ahn , and Junsin Yi, "Study on the ITO work function and hole injection barrier at the interface of ITO/a-Si:H(p) in amorphous/crystalline silicon heterojunction solar cells", Materials Research Bulletin 47 (2012) , pp. 3032 – 3035
[49] Willian D. Callister, JR. , 譯者 陳文照、曾春風、游信和, "MATERIALS SCIENCE AND ENGINEERING AN INTRODUCTION", (2003) , ch4、ch5、ch7、ch19、ch20、ch22
[50] Jae-Hyeong Lee, "Effects of substrate temperature on electrical and optical properties ITO films deposited by r.f. magnetron sputtering", J Electroceram (2009) , pp. 23:554 – 558
[51] J. Hotovy, J. Hupkes, W. Bottler, E. Marins, L. Spiess, T. Kups, V. Smirnov, I. Hotovy, and J. Kova, "Sputtered ITO for application in thin-film silicon solar cells: Relationship between structural and electrical properties", J. Hotovy et al. / Applied Surface Science 269 (2013) , pp. 81 – 87
[52] S.-S. Kim, S.-Y. Choi, C.-G. Park, and H.-W. Jin, "Transparent conductive ITO thin films through the sol-gel process using metal salts", Thin Solid Films, 347 (1999) pp. 155 – 160
[53] Jae-Hyung Kim & Joon-Hyung Lee & Young-Woo Heo & Jeong-Joo Kim & Ju-O Park, " Effects of oxygen partial pressure on the preferential orientation and surface morphology of ITO films grown by RF magnetron sputtering", J Electroceram (2009) 23:169–174 DOI 10.1007/s10832-007-9351-8
[54] Y.-G. Han, D.-H. Kim, J.-S. Cho, S.-K. Koh, and Y.-S. Song, "Tin-doped indium oxide (ITO) film deposition by ion beam sputtering", solar energy materials & solar cells 65 (2001) pp. 211 – 218
[55] John C. C. Fan and John B. Goodenough, "X-ray photoemission spectroscopy studies of Sn-doped indium-oxide films", Journal of Applied Physics, 48 (1977) , pp 3524 – 3531
[56] S M ROZATI and Z BARGEBIDI, "Characterization of molybdenum-doped indium oxide thin films by spray pyrolysis technique", Bull. Mater. Sci., Vol. 36, No. 4, August 2013, pp. 553 – 558. _c Indian Academy of Sciences