| 研究生: |
林欣覦 Hsin-yu Lin |
|---|---|
| 論文名稱: |
β位取代之Bodipy 衍生物及其在光伏打電池的應用 β-substituted Bodipy (4, 4-Difluoro-4-bora-3a, 4a-diaza-s-indacene) Derivatives and Their Application for Organic Photovoltaics |
| 指導教授: |
林建村
Jiann-Tsuen Lin 陳銘洲 Ming-Chou Chen |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 化學學系 Department of Chemistry |
| 畢業學年度: | 99 |
| 語文別: | 中文 |
| 論文頁數: | 124 |
| 中文關鍵詞: | 異質接面 、Bodipy 、光伏打電池 |
| 外文關鍵詞: | heterojunction, Bodipy, organic photovoltaics |
| 相關次數: | 點閱:21 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文合成出一系列含PM-BDP (4,4-difluoro-1,3,5,7,8-pentamethyl-4-bora-3a, 4a-diaza-s-indacene)或PM-BDP’ (2,6-diacetyl-4,4-difluoro-1,3,5,7,8-pentamethyl-4-bora- 3a,4a-diaza-s-indacene)結構之化合物。這些具對稱性之化合物乃是以PM-BDP 與PM-BDP’為電子受體,並在兩端以不同共軛長度的「共軛架橋」聯結可作為電子予體之二苯胺基(diphenylamine)來構成。PM-BDP 系列化合物在450−600 nm 波長處的消光係數為46,400−81,600 M-1cm-1,而隨著分子具有較佳的共面性時,化合物具有較紅位移的光吸收波長與較高的消光係數;而PM-BDP’由於在2號和6號位置增加三鍵架橋基取代的化合物有更加的共面性,因此有更佳的光收成,可達76,200−84,900 M-1cm-1。經由理論計算,可發現這些分子除了具有π−π* 兼電荷轉移吸收特徵,也有良好的消光係數。PM-BDP 基團與相鄰之thiophene 有較大之二面角 (47.1−55.0o),而PM-BDP’與共軛架橋的二面角 (11.4−12.7o) 相對較小。以此類含PM-BDP 結構之分子作為p-type材料,摻以PCBM (phenyl-C61-butyric acid methyl ester)作為n-type 材料,製作出BHJ 形式之有機光伏打電池(Organic Photovoltaic Cells,OPV)。當化合物FBF’ 與PCBM 以1:4 的摻混比例,並於溫度100 ℃下退火10 分鐘製作元件時,可得最佳的元件效率(1.50%)。同時,由於PM-BDP 與PM-BDP’系列分子的HOMO 能階較低,大部分化合物之元件都具有高開環電壓(VOC = 0.80−1.06 V)。PM-BDP’系列化合物有較佳的共軛,物理量測與理論計算皆顯示其有較強與較為紅位移之吸收光譜,但BBB’與2,7-CBC’在有機溶劑中溶解度較差,導致製成之元件效率也不佳。我們藉由原子力顯微鏡(Atomic Force Microscopy,AFM)觀看FBF’ 元件之表面型態(morphology),發現當與PCBM混摻比例為 1:1 時,材料表面有嚴重的堆疊而導致元件之電流密度較低;反之,當FBF’與PCBM 混摻比例為 1:4 時,元件之表面粗糙度相對較低,因而擁有較高之電流密度與轉換效率。
A new series of liner organic compounds containing 4, 4-difluoro-1,3,5,7,8- pentamethyl-4-bora-3a,4a-diaza-s-indacene (PM-BDP) or 2,6-diacetyl-4,4-difluoro- 1,3,5,7,8-pentamethyl-4-bora-3a,4a-diaza-s-indacene (PM-BDP’) unit have been synthesized. These symmetric compounds have a common structural D-S-A-S-D motif, where D (diphenylamine) is the electron donor, A (PM-BDP or PM-BDP’) is the electron acceptor, and S is the π-conjugated spacer of different length. PM-BDP series of compounds have high molar absorption coefficients (46,400−81,600 M-1cm-1) in the region 450−606 nm, and the absorption coefficient and wavelength increase as the planarity of the molecules increases. Among the compounds, the PM-BDP’-based molecules with 2,6-substituted acetylene group have superior light-harvesting behavior (76,200−84,900 M-1cm-1) because of their better coplanarity. Theoretical computation on these molecules confirms that the longer wavelength absorption of the molecules indeed is π−π* transition with charge-transfer character. Therefore, they have large extinction coefficients. Except for the angle between PM-BDP’ and the neighboring thiophene groups (47.1−55.0o), all dihedral angles between two neighboring aromatic rings are fairly small (11.4−12.7o).The photovoltaic devices of BHJ configuration using these PM-BDP’-containing compounds and PCBM (phenyl-C61-butyric acid methyl ester) as the donor and the acceptor, respectively, were also studied. The photovoltaic cell fabricated with the blend of FBF’ and PCBM in 1:4 ratio and annealled at 100 ℃ exhibits the highest power conversion efficiency (η) reaching 1.50%. Most of the devices fabricated with the PM-BDP or PM-BDP’ molecules exhibited high open-circuit voltage (VOC) in the range of 0.80−1.06 V, which can be attributed to the more stabilized HOMO levels of the PM-BDP and PM-BDP compounds. In spite of good light-harvesting behavior, the low solubility of BBB’ and 2,7-CBC’ in common organic solvents prevented formation of films with good quality, which led to low performance of the devices. This is further evidenced by the atomicforce microscopy (AFM) image a plethora of aggregation was found for the blend of FBF’ and PCBM in 1:1 ratio,which led to low current density (JSC). On the contrary, the AFM image of the blend film of FBF’ and PCBM in 1:4 ratio showed rather flattened active layer, which resulted in high current density and power conversion efficiency.
第一章
1. http://www.tri.org.tw/unfccc/main05.htm
“台灣因應氣候變化綱要公約資訊網-再生能源發展”
2. http://www.optoiq.com/index/photonics-technologies-applications.html
Photovoltaics: Measuring the Sun, Jay Jeong, May 21, 2009”.
3. http://www.rfcafe.com/references/electrical.htm
“Solar Spectral Irradiance & PV Cell Operational Regions”.
4. Annual Book of ASTM Standards, 14.04, G173-03, 2008.
5. Becquerel, E. Acad. Sci.1839, 9, 145.
6. Green, M. A. “Proceeding of the 21st IEEE Photovoltaic Specialists Conference.” Orlando, USA: IEEE Publication, 1990.
7. (a) Chapin, D. M.; Fuller, C. S.; Pearson, G. L. J. Appl. Phys. 1954, 25, 676. (b) Grätzel, M. Nature 2000, 403, 363. (c) Grätzel, M. Nature 2001, 414, 338.
8. Green, M. A.; Emery, K.; Hishikawa, Y.; Warta W. Prog. Photovolt: Res. Appl. 2010, 18, 144-150.
9. 郭明村, “薄膜太陽能電池發展近況” 工業材料雜誌 2003, 203, 138.
10. Hurd, F.; Livingston, R. J. Phys. Chem.1940, 44, 865.
11. (a) Oster, G.; Bellin, J. S.; Kinball, R. W.; Scharder, M. E. J. Am. Chem. Soc.1959, 81, 5095. (b) Chaberek, S.; Shepp, A.; Allen, R. J. J. Phys. Chem.1965, 69, 641. (c) Kearns, D. R.; Hollins, R. A.; Khan, A. U.; Chambers, R. W.; Radlick, P. J. Am. Chem. Soc.1967, 89, 5455.
12. Gerischer, H.; Tributsch, H. Ber. Bunsenges. Phys. Chem.1968, 72, 437.
13. Regan, B. O.; Grätzel, M. Nature 1991, 343, 737.
14. Moore, G. F.; Brudvig, G. W. Annu. Rev. Condens. Matter Phys. 2011, 2, 303.
15. Williams, R. J. Chem. Phys.1960, 32, 1505.
16. (a) Gűnes, S.; Neugebauer, H.; Sariciftci, N. S. Chem. Rev. 2007, 107, 1324. (b) Kietzke, T. Advances in OptoElectronics 2007, 40285.
17. Tang, C. W. Appl. Phys. Lett. 1986, 48, 183.
18. Karg, S.; Riess, W.; Dyakonov, V.; Schwoerer, M. Synth. Met. 1993, 54, 427.
19. Peumans, P.; Forrest, S. R. Appl. Phys. Lett. 2001, 79, 126.
20. (a) Tsuzuki, T. T.; Shirota, J.; Rostalski, J.; Meissner, D. Sol. Energy Mater. Sol. Cells 2000, 61, 1. (b) Uchida, J. X.; Rand, B. P.; Forrest, S. R. Appl. Phys. Lett. 2004, 84, 4218. (c) Zhou, X.; Blochwitz, J.; Pfeiffer, M.; Nollau, A.; Fritz, T.; Leo, K. Adv. Funct. Mater. 2001, 11, 310. (d) Wöhrle, D.; Meissner, D. Adv. Mater. 1991,3, 129. (e) Jenekhe, S. A.; Yi, S. Appl. Phys. Lett. 2000, 77, 2635. (f) Breeze, A. J.; Salomon, A.; Ginley, D. S.; Gregg, B. A.; Tillmann, H.; Hoerhold, H. H. Appl. Phys. Lett. 2002, 81, 3085. (g) Sariciftci, N. S.; Braun, D.; Zhang, C.; Srdanov, V. I.; Heeger, A. J.; Stucky, G.; Wudl, F. Appl. Phys. Lett. 1993,62, 585. (h) Halls, J. J. M.; Walsh, C. A.; Greenham, N. C.; Marseglia, E. A.; Friends, R. H.; Moratti, S. C.; Holmes, A. B. Nature 1995, 78, 451.
21. Winder, C.; Sariciftci, N. S. J. Mater. Chem. 2004, 14, 1077.
22. Harrison, M. G.; Gruener, J.; Spencer, G. C. W. Phys. Rev. B 1997, 55, 7831.
23. Yu, G.; Gao, J.; Hummelen, J.; Wudl, F.; Heeger, A. J. Science 1995, 270, 1789.
24. Padinger, F.; Rittberger, R.S.; Sariciftci, N. S. Adv. Funct. Mater. 2003, 13, 85.
25. Park, S. H.; Roy, A.; Beaupre´, S.; Cho, S.; Coates, N.; Moon, J. S.; Moses, D.; Leclerc, M.; Lee, K.; Heeger, A. J. Nat. Photonics 2009, 3, 297.
26. Chen, H. Y.; Hou, J.; Zhang S.; Liang Y.; Yang G.; Yang Y.; Yu L.; Wu Y.; Li, G. Nature Photonics 2009, 3, 649.
27. Thompson, B. C.; Fréchet, J. M. J. Angew. Chem., Int. Ed. 2008, 47, 58.
28. Brabec, C. J.; Sariciftci, N. S.; Hummelen, J. C. Adv. Funct. Mater. 2001, 11, 15.
29. Hoppe, H.; Sariciftci, N. S. J. Mater. Chem. 2004, 19, 1924.
30. (a) de Bettignies, R.; Nicolas, Y.; Blanchard, P.; Levillain, E.; Nunzi, J.-M.; Roncali, J. Adv. Mater. 2003,15, 1939. (b) Cravino, A.; Leriche, P.; Alévêque, O.; Roquet, S.; Roncali, J. Adv. Mater. 2006, 18, 3033. (c) Lloyd, M. T.; Mayer, A. C.; Subramanian, S.; Mourey, D. A.; Herman, D. J.; Bapat, A. V.; Anthony, J. E.; Malliaras, G. G. J. Am. Chem. Soc. 2007, 129, 9144. (d) Tamayo, A. B.; Walker, B.; Nguyen, T.-Q. J. Phys. Chem. C 2008, 112, 11545. (e) Lincker, F.; Delbosc, N.; Bailly, S.; De Betignies, R.; Billon, M.; Pron, A.; Demadrille, R. Adv. Funct. Mater. 2008, 18, 3444. (f) Silvestri, F.; Irwin, M. D.; Beberina, L.; Facchetti, A.; Pagani, G. A.; Marks, T. J. J. Am. Chem. Soc. 2008, 130, 17640. (g) Kronenberg, N. M.; Deppisch, M.; Würthner, F.; Lademann, K. D.; Meerholz, K. Chem. Commun. 2008, 6489. (h) Rousseau, T.; Cravino, A.; Bura, T.; Ulrich, G.; Ziessel, R.; Roncali, J. Chem. Commun. 2009, 1673. (i) Marrocchi, A.; Silvestri, F.; Seri, M.; Facchetti, A.; Taticchi, A.; Marks, T. J. Chem. Commun. 2009, 1380. (j) Walker, B.; Tamayo, A. B.; Dang, X. D.; Jung, P. Z.; Seo, H.; Garcia, A.; Tantiwiwat, M.; Nguyen, T. Q. Adv. Funct. Mater. 2009, 19, 3063. (k) Wong, W. W. H.; Jones, D. J.; Yan, C.; Watkins, S. E.; King, S.; Haque, S. A.; Wen, X.; Ghiggino, K. P.; Holmes, A. B. Org. Lett. 2009, 11, 975.
31. Schllze, K.; Uhrich, C.; Schüppel, R.; Leo, K.; Pfeiffer, M.; Brier, E.; Reinold, E.; Bäuerle, P. Adv. Mater. 2006, 18, 2872.
32. Xue, J.; Rand, B. P.; Uchida, S.; Forrest, S. R. Adv. Mater. 2005, 17, 66.
33. Matsuo, Y.; Sato, Y.; Niinomi, T.; Soga, I.; Tanaka, H.; Nakamura, E. J. Am. Chem. Soc. 2009, 131, 16048.
34. Boudreault, P. L. T.; Najari, A.; Leclerc, M. Chem. Mater. 2011, 23, 456.
35. Cheng, Y. J.; Yang, S. H.; Hsu, C. S. Chem. Rev. 2009, 109, 5868.
36. (a) Halls, J. J. M.; Pichler, K.; Friend, R. H.; Moratti, S. C.; Holmes, A. B. Appl. Phys. Lett. 1996, 68, 3120. (b) Theander, M.; Yartsev, A.; Zigmantas, D.; Sundstrom, V.; Mammo, W.; Andersson, M. R.; Inganas, O. Phys. Rev. B 2000, 61, 12957. (c) Haugeneder, A.; Neges, M.; Kallinger, C.; Spirkl, W.; Lemmer, U.; Feldmann, J.; Scherf, U.; Harth, E.; Gu¨gel, A.; Mullen, K. Phys. Rev. B 1999, 59, 15346. (d) Stubinger, T.; Brutting, W. J. Appl. Phys. 2001, 90, 3632. (e) Markov, D. E.; Amsterdam, E.; Blom, P. W. M.; Sieval, A. B.; Hummelen, J. C. J. Phys. Chem. A 2005, 109, 5266.
37. Brabec, C. J.; Cravino, A.; Meissner, D.; Sariciftci, N. S.; Fromherz, T.; Rispens, M. T.; Sanchez, L. Hummelen, J. C. Adv. Funct. Mater. 2001, 11, 374.
38. Ulrich, G.;Ziessel, R.; Harriman, A. Angew. Chem. Int. Ed.2008, 47, 1184.
39. Treibs, A.; Kreuzer, F. H. Justus Liebigs Ann. Chem. 1968, 718, 208.
40. (a) Loudet, A.; Burgess K. Chem. Rev.2007, 107, 4891. (b) Ziessel, R.; Ulrich, G.; Harriman, A. New J. Chem.2007, 31, 496. (c) Ulrich, G.; Ziessel, R.; Harriman, A, Angew. Chem. Int. Ed. 2008, 47, 1184.
41. Hattori, S.; Ohkubo, K.; Urano, Y.; Sunahara, H.; Nagano, T.; Wada, Y.; Tkachenko, N. V.; Lemmetyinen, H.; Fukuzumi, S. J. Phys. Chem. B 2005, 109, 15368.
42. Erten-Ela, S.; Yilmaz, D.; Icli, B.; Dede, Y.; Icli, S.; Akkaya, E. U. Org. Lett. 2008, 10, 3299.
43. Rousseau, T.; Cravino A.; BuraT.; Ulrich, G.; Ziessel, R.; Roncali, J. Chem. Commun.2009, 1673.
44. Rousseau, T.; Cravino, A.; Bura, T.; Ulrich, G.; Ziessel, R.; Roncali J. J. Mater. Chem. 2009, 19, 2298.
45. Kim, B. S.; Ma, B.; Donuru, V. R.; Liuc, H.; Frechet, J. M. J. Chem. Commun. 2010, 46, 4148.
46. Rousseau, T.; Cravino, A.; Ripaud, E.; Leriche, P.; Rihn, S.; de Nicola, A.; Ziessel, R.; Roncali, J. Chem. Commun. 2010, 46, 5082.
47. Choi, H.; Paek, S.; Song, J.; Kim, C.; Cho, N.; Ko, J. Chem. Commun. 2011, 47, 5509.
第三章
48. (a) Milstein, D.; Stille, K. J. J. Am. Chem. Soc. 1978, 100, 3636. (b) Espinet, P.; Echavarren, A. M. Angew. Chem. Int. Ed. 2004, 43, 4704.
49. Slagt, V. F.; de Vries, A. H. M.; de Vries, J. G.; Kellogg, R. M. Org. Proc. Res. Develop. 2010, 14, 30.
50. (a) Sonogashira, K.; Tohda, Y.; Hagihara, N. Trtrahedron Lett. 1975, 4467. (b) Sonogashira, K. J. Organomet. Chem. 2002, 653, 46. (c) Tywinski, R. R. Angew. Chem. 2003, 115, 1604. (d) Tywinski, R. R. Angew. Chem. Int. Ed. 2003, 42, 1566.
51. (a) Tamao, K.; Sumitani, K.; Kumada, M. J. Am. Chem. Soc. 1972, 94, 4374. (b)Yamamura, M.; Moritani, I.; Murahashi, S.-I. J. Organomet. Chem. 1975, 91, C39. (c) Fauvarque, J. F.; Jutand, A. Bull. Soc. Chim. Fr. 1976, 765. (d) Sekiya, A.; Ishikawa, N. J. Organomet. Chem. 1976, 118, 349.
52. (a) Shah, M.; Thangaraj, K.; Soong, M.-L.; Wolford, L. T.; Boyer, J. H. Hetero. Chem. 1990, 1, 389. (b) Chen, T.; Boyer, J. H.; Trudell, M. L. Hetero. Chem. 1997, 8, 51. (c) Guo, B.; Peng, X.; Cui, A.; Wu, Y.; Tian, M.; Zhang, L.; Chen, X.; Gao, Y. Dyes and Pigments 2007, 73, 206.
53. (a) Alemdaroglu, F. E.; Alexander, S. C.; Ji, D.; Prusty, D. K.; Borsch, M.; Herrmann, A. Macromolecules 2009, 42, 6529. (b) Donuru, V. R.; Vegesna, G. K.; Velayudham, S.; Green, S.; Liu, H. Chem. Mater. 2009, 21, 2130.
54. (a) Justin Thomas, K. R.; Lin, J. T.; Tao, Y.T.; Ko, C.-W. Chem. Mater. 2002, 14, 1354. (b) Dudek, S. P.; Pouderoijen, M.; Abbel, R.; Schenning, A. P. H. J.; M, E. W. J. Am. Chem. Soc. 2005, 127, 11763.
55. Zhang, H.; Wan, X.; Xue, X.; Li, Y.; Yu, A.; Chen, Y. Eur. J. Org. Chem. 2010, 1681.
56. Chen, J.; Mizumura, M.; Shinokubo, H.; Osuka, A. Chem. Eur. J. 2009, 15, 5942.
57. (a) Tang, W.; Lin, T.; Ke, L.; Chen, Z.-K. J. Polym. Sci. Part A: Polym. Chem. 2008, 46, 7725. (b) Kang, E. S. H.; Yuen, J. D.; Walker, W.; Coates, N. E.; Cho, S.; Kim, E.; Wudl, F. J. Mater. Chem. 2010, 20, 2759. (c) Dierschke, F.; Grimsdale, A. C.; Müllen K. Synthesis 2003, 16, 2470.
58. Hayashi, Y.; Yamaguchi, S.; Cha, W. Y.; Kim, D.; Shinokubo, H. Org. Lett. 2011, 13, 2992.
59. Arbeloa, F. L.; Banuelos, J.; Martinez, V.; Arbeloa, T.; Arbeloa, I. L. International Reviews in Physical Chemistry 2005, 24, 339.
60. (a) Zotti, G.; Schiavon, G.; Zecchin, S.; Morin, J.-F.; Leclerc, M. Macromolecules 2002, 35, 2122. (b) Sonntag, M.; Strohriegl, P. Chem. Mater. 2004, 16, 4736.
61. Shrotriya, V.; Yao, Y.; Li, G.; Yang, Y. Appl. Phys. Lett. 2006, 89, 063505