| 研究生: |
鄭宇翔 Yu-Hsiang Cheng |
|---|---|
| 論文名稱: |
圓盤全像之光開關研究與複製製程開發 Study of optical switching and development of replication process for disk-type hologram |
| 指導教授: |
陳啟昌
Chii -Chang Chen 鄭益祥 Yih-Shyang Cheng |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 光電科學與工程學系 Department of Optics and Photonics |
| 論文出版年: | 2012 |
| 畢業學年度: | 101 |
| 語文別: | 中文 |
| 論文頁數: | 91 |
| 中文關鍵詞: | 圓盤全像 、光開關 、液晶 、光阻 |
| 外文關鍵詞: | Disk-type hologram, Optical switching, Liquid crystal, Photoresist |
| 相關次數: | 點閱:26 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
從1948 D. Gabor 發明全像術後,全像術已有相當廣泛的發展。其中,圓盤全像片發展至今已經相當純熟,可以重建多色的影像,在觀賞視窗方面也做了大幅度的改善。但是這些圓盤全像片目前還是得利用雷射光複製,還無法利用壓模技術將它量產,本研究證實了將圓盤全像片製作在光阻上的可行性。
本論文利用光阻當作全像資訊的記錄材料,實驗主要分為兩部份。第一部份,我們以雙光束夾角20o記錄全像光柵,過程中測試了顯影時間與光柵深度之關係,發現在顯影40秒時光柵深度最深有1.2m,而在顯影時間為20秒時反而有最佳繞射效率31.1%。之後將光柵製作成液晶盒,且在玻璃基板上作配向處理,以毛細現象吸入E7液晶,外加電壓後可調變繞射效率,繞射效率調變幅度最好的情況可由3.5%調變至7%。
論文之第二部份利用第一部份的經驗將圓盤型複合全像片複製到光阻上。一般而言,光阻材料常被使用於「壓印式全像」產品的「母板」製作,然而由於光阻所需的曝光量遠大過鹵化銀材料,因此若以光阻材料直接重覆曝光記錄複合全像資訊,將受耗費時間、容易被環境擾動等因素所影響,導致成功率降低。我們先利用Slavich公司製造的PFG-03C全像底片製作複合式圓盤母片(H1),並且利用單束光複製系統將其拷貝到全像底片H2上以提高繞射效率,最後再將全像片H2之資訊複製到光阻上。我們利用此三步驟的製作方式將圓盤全像片複製到光阻底片上,得到在光阻底片上的顯影深度最深可達到500nm。
Holography was invented by D. Gabor in 1948. The disk-type multiplex holography is a somewhat mature technology which can reconstruct chromatic images with improved viewing window. However, the laser has to be used to replicate image of object for the disk-type multiplex holography. In this study, we demonstrated the feasibility of disk-type multiplex holography duplicated in photoresist film.
In this thesis, we first use two-beam interference to record holographic grating in the photoresist. The angle of the two beams is set as 20 degrees. We characterize the relationship of the development time and the depth of the gratings. The grating depth of 1.2m can be achieved for the developing time of 40 seconds. The best diffraction efficiency higher than 30% can be obtained at developing time of 20 seconds. Additionally, in order to fabricate the liquid crystal cell to tune the diffraction efficiency of the hologram, we cover another rubbed glass on the grating. The liquid crystal E7 is then infiltrated into the cell by capillarity. By changing the applied voltage to rotate the liquid crystal, the refractive index of liquid crystal can be changed to improve the diffraction efficiency from 3.5% to 7%.
The photoresist are often used in production of master plates for embossed holograms. However, the required exposure time for gratings in photoresist is much longer than that for a silver halide film which is often used for multiplex hologram fabrication. Therefore, we use the Slavich PFG-03C holographic film to record a master hologram (H1). A single-beam system is then used to copy the information from the master hologram (H1) onto the transfer hologram (H2). The diffraction efficiency of the transfer hologram can be enhanced since it is a single-exposure process. Finally, we copy the information from the transfer hologram (H2) by the single-beam system on the photoresist film. The process to copy the disk-type multiplex hologram in photoresist is successfully demonstrated. The highest depth of the gratings is up to around 500 nm.
[1] D. Gabor, “A new microscopic principle,” Nature 161, 777 (1948).
[2] E. N. Leith and J. Upatnieks, “Reconstructed wavefronts and communication theory,” J. Opt. Soc. Am. 52, 1123 (1962).
[3] E. N. Leith and J. Upatnieks, “Wavefront reconstruction with continuous-tone objects,” J. Opt. Soc. Am. 53, 1377 (1963).
[4] E. N. Leith and J. Upatnieks, “Wavefront reconstruction with diffused illumination and three-dimensional objects,” J. Opt. Soc. Am. 54, 1295 (1964).
[5] S. A. Benton, “Hologram reconstructions with extended light sources,” J. Opt. Soc. Am. 59, 1545 (1969).
[6] J. T. McCrickerd and N. George, “Holographic Stereogram from Sequential Component Photographs,” Appl. Phys. Lett. 12, 10 (1968).
[7] D. J. De Bitetto, “Bandwidth reduction of hologram transmission system by elimination of vertical parallax,” Appl. Phys. Lett. 12, 176 (1968).
[8] R. D. Bahuguna and F. Mendoza-Santoyo, “Simple rainbow-holographic techniques for two-dimensional transparencies,” Opt. Lett. 9, 381 (1984).
[9] E. N. Leith and H. Chen, “Deep-image rainbow holograms,” Opt. Lett. 2, 82 (1978).
[10] R. V. Pole, “3-D imagery and holograms of objects illuminated in white light,” Appl. Phys. Lett. 10, 20 (1967).
[11] M. Yamaguchi, H. Endoh, T. Honda, and N. Ohyama, “High-quality recording of a full-parallax holographic stereograms with a digital diffuser,” Opt. Lett. 19, 135 (1994).
[12] M. Yamaguchi, N. Ohyama, and T. Honda, “Holographic three-dimensional printer: new method,” Appl. Opt. 31, 217 (1992).
[13] M. Yamaguhi, H. Sugiura, T. Honda, and N. Ohyama, “Automatic recording method for holographic three-dimensional animation,” J. Opt. Soc. Am. 9, 1200 (1992).
[14] D. J. DeBitetto, “Holographic panoramic stereograms synthesized from white light recordings,” Appl. Opt. 8, 1740 (1969).
[15] D. J. DeBitetto, “Transmission bandwidth reduction of holographic stereograms recorded in white light,” Appl. Phys. Lett. 12, 343 (1968).
[16] L. Huff and R. L. Fusek, “Color holographic stereograms,” Opt. Eng. 19, 691 (1980).
[17] E. N. Leith and P. Voulgaris, “Multiplex holography: some new methods,” Opt. Eng. 24, 171 (1985).
[18] G. Saxby, “Practical Holography, 2nd ed.”, (Prentice-Hall, Englewood Cliffs, N.J,1994), p.308.
[19] S. A. Benton, “Alcove holograms for computer-aided design,” in True Three-Dimensional Imaging Techniques and Display Technologies, D. F. McAllister and W. E. Robbins (eds.), Proc. SPIE 761, 53 (1987).
[20] N. D. Haig, “Three-dimensional holograms by rotational multiplexing of two-dimensional films,” Appl. Opt. 12, 419 (1973).
[21] J. Upatnieks, “Edge-illuminated holograms,” Appl. Opt. 31, 1048 (1992).
[22] K. Okada, S. Yoshii, Y. Yamaji, J. Tsujiuchi and T. Ose, “Conical holographic stereograms,” Opt. Commun. 73, 347 (1989).
[23] L. M. Murillo-Mora, K. Okada, T. Honda, and J. Tsujiuchi, “Color conical holographic stereogram,” Opt. Eng. 34, 814 (1995).
[24] L. M. Murillo-Mora, K. Okada, T. Honda, and J. Tsuijiuchi, “Distortion compensation and perspective correction method for a conical holographic stereogram,” Opt. Eng. 36, 1706 (1997).
[25] Y. S. Cheng, S. Y. Chen, and R. C. Chang, “Distortion correction for conical multiplex holography using direct object-image relationship,” Proc. Natl. Sci. (2001).
[26] Y. S. Cheng, W. H. Su, and R. C. Chang, “Disk-type multiplex holography,” Appl. Opt. 38, 3093 (1999).
[27] T. A. Shankoff, “Phase Holograms in Dichromated Gelatin,” Appl. Opt. 7, 2101 (1968).
[28] K. S. Pennington, J. S. Harper, and F. P. Laming, “New Phototechnology Suitable for Recording Phase Holograms and Similar Information in Hardened Gelatin,” Appl. Phys. Lett. 18, 82 (1971).
[29] S. Shibata, O. Sugihara, T. Kaino, N. Okamoto, “Fabrication of High Resolution Gratings for Polymeric Optical Waveguide Devices”, Proc. SPIE 5351, 127 (2004).
[30] D. Sawaki, and J. Amako, “Subwavelength photoresist patterning using liquid-immersion interference exposure with a deep-UV hologram mask”, Proc. SPIE 7202, 72020L-1 (2009).
[31] D. Churchill, J. V. Cartmell. “Radiation sensitive display device containing encapsulated cholesteric liquid crystals,” US Patent 3,578,844, (1971).
[32] J. L. Fergason, “Encapsulated liquid crystal and method,” US Patent 4,435,047, (1984).
[33] R. L. Sutherland, L. V. Natarajan, V. P. Tondiglia, and T. J. Bunning, “Bragg Gratings in an AcrylatePolymer Consisting of Periodic Polymer-Dispersed Liquid-Crystal Planes,” Chem. Mater. 5, 1533 (1993).
[34] K. Tanaka, K. Kato, M. Date, “Fabrication of holographic polymer dispersed liquid crystal (HPDLC) with high reflection efficiency,” Jpn. J. Appl. Phys. 38, 277 (1999).
[35] 陳志宏, “產生實像之成像面圓盤型複合全像做片製作與複製研究, ” 國立中央大學光電科學研究所博士論文 (2005).
[36] R. J. Colliier, C. B. Burckhardt, L. H. Lin, “Optical Holography,” (New York: Academic Press ,1971).
[37] P. Y. Amnon Yariv, “Optical Waves in crystals,” (John Wiley & Son, 1984)
[38] P. J. Collings, and M. Hird, “Introduction to liquid crystals- Chemistry and Physics, ” (Taylor & Francis, 1997)
[39] D. J.R. Cristaldi, S. Pennisi, F. Pulvirenti, “Liquid Crystal Display Drivers: Techniques and Circuits.” (Springer,2009)
[40] 田民波, “TFT液晶顯示原理與技術,”五南圖書出版股份有限公司, (2008)
[41] M. G. Moharam, Eric B. Grann, Drew A. Pommet, and T. K. Gaylord, “Formulation for stable and efficient implementation of the rigorous coupled-wave analysis of binary gratings”, J. Opt. Soc. Am. A, 12(5), 1068-1076, 1995.
[42] 張高德, “廣義光子晶體元件之研究與分析,” 國立中央大學光電科學研究所博士論文 (2007).
[43] J. T. LaMacchia, and C. J. Vincelette, “Comparison of the Diffraction Efficiency of Multiple Exposure and Single Exposure Holograms”, Appl. Opt. 7, 1857 (1968).
[44] 林詩珩, “可環繞觀賞之傳統圓盤型複合全像術, ” 國立中央大學光電科學研究所碩士論文 (2004)
[45] Ts. Petrova, B. Ivanov, K. Zdravkov, D. Nazarova, E. Stoykova, G. Minchev, and V. Sainov, “Basic Holographic Characteristics of a Panchromatic Light SensitiveMaterial for Reflective Autostereoscopic 3D Display”, EURASIP J. Adv. Signal Process. 2009.
[46] 蔡宗霖, “可環繞觀賞全像圓盤子片之繞射效率均勻性研究, ” 國立中央大學光電科學研究所碩士論文 (2011).