| 研究生: |
李育融 Yu-Jung Li |
|---|---|
| 論文名稱: |
細胞分化與腫瘤生長之理論模型 A Theoretical Model for Both Embryogenesis and Carcinogenesis |
| 指導教授: |
黎璧賢
Pik-Yin Lai |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 生物物理研究所 Graduate Institute of Biophysics |
| 畢業學年度: | 97 |
| 語文別: | 英文 |
| 論文頁數: | 101 |
| 中文關鍵詞: | 癌化過程 、細胞生長 、細胞分化 、細胞帕茲模型 、蒙地卡羅模擬 |
| 外文關鍵詞: | Cell differentiation, cell growth, Carcinogenesis, Cellular Potts model (CPO), Monte Carlo simulation |
| 相關次數: | 點閱:9 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
利用細胞帕茲模型,我們建立了一個關於細胞分化與癌症發展模型。我們假設了細胞分化狀態與其分裂速度、以及細胞間的交互作用有關。利用這樣的模型,我們不只可以模擬胚胎發育過程,還能模擬癌化過程的病理切片下所觀察到的腫瘤結構。在電腦的模擬過程中,我們使用蒙地卡羅原則,利用二維格點分析,使質點可以在所有格點上面做隨機運動。此外,空的格點可以根據其鄰近的質點改變其狀態,用來模擬細胞分裂,並且所有的非零質點狀態皆有機會恢復為空的格點,用來模擬細胞死亡。根據模擬結果,我們發現當腫瘤細胞之間的作用力小於一個臨界點,會造成細胞的大量增生。另外,當細胞之間的作用力增加,會在腫瘤細胞的增生過程中,形成明顯的團狀結構;而當此作用力減小,腫瘤的生長則會形成比較類似擴散狀態的表現。而這些生長表現與腫瘤的預後相關,並可作為臨床病理切片的印證。
By utilizing the generalized cellular Potts model (CPO), we propose a model for both cell differentiation and carcinogenesis. Employing different cell-cell interaction energies, this model can describe different stages of cell differentiations. Cell aggregation and organogenesis during the processes of embryogenesis are simulated in the model by Monte Carlo method. The motions of different types of cells (q states) represent as random walkers on a two-dimensional square lattice. Besides, a vacant site can change its state according to its neighboring cells in order to mimic cell proliferations. And all the cells can have chances to become vacant to mimic cell death. This model can also describe the process of carcinogenesis and other tumorigenesis including both benign and malignant tumors. Our results suggest that there exists critical interaction strength and below which the number of the tumor cells will increase rapidly. Various pattern formations are also observed with different particle interactions, which can be associated to clinical findings. These cells may either aggregate into a cluster or appear more diffusively. These growth patterns relate to tumor prognosis and may provide some hints for further pharmacology design for anti-neoplasm agents.
Reference:
1. Gilbert S.F. (eds) “Developmental Biology.” 8 (edn). Sinauer Associates, Inc. (2006)
2. Bruce, A., Alexander, J., Julian, L., Martin, R., Keith, R., and Peter, W. http://www.ncbi.nlm.nih.gov/books/bv.fcgi?rid=mboc4.section.3738 , Molecular Biology of the Cell. Fourth Edition. (2002)
3. Kelley, Steever, Haberek, Chariho Middle School Library Media Center, http://www.chariho.k12.ri.us/cms/library/images/reproduction/fertilization3.jpg ,(2007)
4. Robert, E. M., Diane, S., et. al. (eds) Oral and Maxillofacial Pathology. 1-st (edn) Quintessence Publishing Co, Inc. Carol Stream, Illinois. ISBN: 0-86715-390-3 (2003)
5. AJCC Cancer Staging Manual. 8 (edn). Springer-Verlag, New York. (2002)
6. Denoix, P.F. Enquete permanent dans les centres anticancereaux. Bull Inst Nat Hyg 1946;1:70-5. (1952)
7. Li, B.K., Cui, B.K., Yuan, Y.F., et al. "Evaluation of new TNM staging system for hepatocellular carcinoma after hepatectomy".(2005).
8. Quirke, P., Morris, E. "Reporting colorectal cancer". Histopathology 50 (1): 103–12. (2007)
9. Friedman, A. A hierarchy of cancer models and their mathematical challenges, Discrete and continuous dynamical systems-series. B 2, 147, (2004)
10. Dean, M. and Bates, S. umor stem cells and drug resistance. Nature Rev., 5:275–283. (2005).
11. Merlo, L. M. F., Pepper, J. W., Reid, B. J., and Maley, C. C. Cancer as an evolutionary and ecological process. Nature Rev. Cancer, 6:924–935. (2006).
12. Weinberg, R. A. The biology of cancer. Garland Science, New York. (2007).
13. Friedman, A. A hierarchy of cancer models and their mathematical challenges, Discrete and continuous dynamical systems-series B 2, 147, (2004)
14. Ricard, V. et al Cancer stem cells as the engine of tumor progression, (2007)
15. David, D, Franziska, M. Successful Therapy Must Eradicate Cancer Stem Cells. Stem Cells 24:2603–2610, (2006)
16. Ashkin, J., Teller, E. Statistics of Two-Dimensional Lattices with Four Components. Physical Review. Vol. 64, No. 5 and 6 (1943).
17. Potts Renfrey, B. Some Generalized Order-Disorder Transformations. Proceedings of the Cambridge Philosophical Society, Vol. 48, pp. 106−109. (1952).
18. Tucker, Alan. Applied Combinatorics, Fourth Edition. John Wiley and Sons, Inc. Hoboken, NJ. (2002).
19. Cipra, B. Statistical Physicists Phase Out a Dream. Science. Vol 288 Issue 5471, p1561. June (2000).
20. Chang, S.C., Shrock, R. Exact partition function for the Potts model with next-nearest neighbor couplings on arbitrary-length ladders. International Journal of Modern Physics B, Vol. 15, No. 5 443-478. (2001).
21. Welsh, D. J. A.; Merino, C.The Potts model and the Tutte polynomial. Probabilistic techniques in equilibrium and nonequilibrium statistical physics. J. Math. Phys. Vol. 41, No. 3, 1127--1152. (2000).
22. Roeland, M.H., Glazier, J.A., A cell-centered approach to developmental biology. Physica A 352, 113–130. (2005).
23. Hogeweg, P., Evolving mechanisms of morphogenesis: on the interplay between differential adhesion and cell differentiation, J.Theor.Biol. 203, 317–333. (2000).
24. Kesmir, C.,De Boer R.J., A spatial model of germinal center reactions: cellular adhesion based sorting of B cells results in efficient affinity maturation, J. Theor. Biol. 222, 9–22. (2003).
25. Turner, S., Sherratt, J.A., Intercellular adhesion and cancer invasion: a discrete simulation using the extended Potts model, J. Theor. Biol.216, 85–100. (2002).
26. Savill, N.J., Sherratt, J.A., Control of epidermal cell clusters by notch-mediated lateral inhibition, Dev. Biol.258, 141–153. (2003).
27. Zeng, W., Thomas, G.L., Glazier, J.A., Non-Turing stripes and spots: a novel mechanism for biological cell clustering, Physica A 341, 482–494. (2004).
28. Zajac, M., Jones, G.L., Glazier, J.A., Simulating convergent extension by way of anisotropic differential adhesion, J. Theor. Biol. 222, 247–259. (2003).
29. Merks, R.M.H., Newman, S.A., Glazier, J.A., Cell-oriented modeling of in vitro capillary development, in: P.M.A. Sloot, Chopard, B., Hoekstra, A.G. (eds.), Cellular Automata. Sixth International Conference on Cellular Automata for Research and Industry, Lecture Notes in Computer Science (edn), vol.3305, Spinger, Berlin, pp.425–434. (2004)
30. Mare´e, A.F.M., Hogeweg, P., How amoeboids self-organize into a fruiting body: multicellular coordination in Dictyostelium discoideum, Proc.Natl.Acad.Sci.98, 3879–3883. (2001).
31. Vittorio, C., Lowengrub, J., Nie, Q. Nonlinear simulation of tumor growth. J. Math. Biol. 46, 191-224. (2003).
32. David, J. A., et. al. (eds) Squamous Cell Head and Neck Cancer: Recent Clinical Progress and Prospects for the Future. 1-st (edn) Humana Press Inc. Totowa, New Jersey. ISBN: 1-58829-473-0 (2005)