| 研究生: |
張善淵 Shan-yuan Chang |
|---|---|
| 論文名稱: |
使用電子迴旋共振化學氣相沉積製備異質接面太陽能電池表面鈍化氫化非晶矽薄膜之製程參數研究 Surface passivation layer of α-Si:H thin films from process parameters study in HIT solar cell was prepared by ECR-CVD |
| 指導教授: |
利定東
Ting-tung Li |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 能源工程研究所 Graduate Institute of Energy Engineering |
| 論文出版年: | 2013 |
| 畢業學年度: | 101 |
| 語文別: | 中文 |
| 論文頁數: | 108 |
| 中文關鍵詞: | 氫化非晶矽 、表面鈍化 、光放射光譜儀 、電子迴旋共振 、化學氣相沉積 、載子生命週期 |
| 外文關鍵詞: | hydrogenated amorphous silicon, surface passivation, Optical Emission Spectroscopy(OES), Electron Cyclotron Resonance(ECR), Chemical Vapor Deposition(CVD), carrier lifetime |
| 相關次數: | 點閱:15 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究使用電子迴旋共振化學氣相沉積製備異質接面太陽能電池表面鈍化氫化非晶矽薄膜之製程參數,調變的參數為微波功率、壓力、磁場共振位置、溫度及氫稀釋濃度比。製程過程中輔以光放射光譜儀(OES)監測電漿物種變化,並搭配FTIR、拉曼光譜儀、橢圓偏光儀來探討薄膜的結構特性,最後以Photoconductance lifetime tester判斷鈍化效益的好壞。
經由實驗可得,考慮到電子密度及電子溫度的影響因此製程壓力選用5mtorr最為恰當;至於功率可選用低功率500W;溫度方面,製程溫度以300℃為佳;綜合以上參數,可於磁場組態40/12/22、氫稀釋比0.2、厚度20nm下獲得品質穩定的非晶矽鈍化薄膜。經過退火270 ˚C-120s後數載子生命週(Lifetime)從523.79μsec提升至1.18msec;Implied Voc從626.48mV提升至657.48mV;R*從0.2下降到0.18;氫含量32.7%降至31.6%。
Surface passivation layer of hydrogenated amorphous silicon thin films (α-Si:H) in heterojunction with intrinsic thin layer (HIT) solar cell was prepared by Electron Cyclotron Resonance Chemical Vapor Deposition (ECR-CVD). The process parameters effects on films of surface passivation were investigated. In this study, the Optical Emission Spectroscopy (OES) has been used as a tool for analyzing the plasma spectrum and tried to find out the relationship to the deposition properties under varying process settings such as microwave power, pressure, magnetic field resonance position, temperature, and dilution ratio. The thin film properties were analyzed by Fourier transform infrared spectroscopy, Raman spectroscopy, and Ellipsometry. The surface passivation quality was determined by photo-conductance lifetime tester.
The result showed that the stable and high quality of passivated amorphous silicon thin films could be obtained under the parameters of including thickness of 20nm, dilution ratio of 0.2, microwave power of 500W, substrate temperature of 300℃, pressure of 5mTorr and magnetic field configuration are of 40A, 12A and 22A which represents main coil, inner coil and outer coil current respectively.
The thin film properties could be optimized after annealing process under the temperature 270 ˚C for 120sec. The lifetime of passivated amorphous silicon thin films increased from 523.79μsec to 1.18msec, the implied Voc increased from 626.48mV to 657.48mV, the microstructure parameter (R*) decreased from 0.2 to 0.18, and the hydrogen content (CH) decreased from 32.7% to 31.6%.
[1]黃惠良,曾百亨,太陽電池,五南出版社,2008年12月。
[2] I. Hutchinson, Principles of Plasma Diagnostics, Cambridge University Press, 2002.
[3] 魏寶文,趙紅衛,離子的噴泉,一版,清華大學、暨南大學,北京,2001.
[4] D. Griffiths, Introduction to Electrodynamics, third edition, Prentice Hall, U.S.A., 1998.
[5] A. Cambel and M. Cambel, Plasma physics, Boston Heath, 1965.
[6] S. ossnagel, J. Cuomo and W. Westwood, Handbook of plasma processing technology Fundamentals, William Dickson, 1937.
[7] H. Kaufman, “Explanation of Bohm diffusion”, Journal of Vacuum Science & Technology B, Vol. 8, pp. 107-109, 1990.
[8] M. Taguchi*, “Obtaining a Higher Voc in HIT Cells”, Progress in Photovoltaics: Research and Applications, Vol. 13, pp. 481-488, 2005.
[9] D. Smith, Thin Film Deposition: principles and practice, First edition, McGraw-Hill, 1994.
[10]J. Dziewior and W. Schmid, “Auger coefficients for highly doped and highly excited silicon”, Applied Physics Letters, Vol. 31, pp. 346- 368, 1977.
[11] A. Richter, F. Werner, A. Cuevas, J. Schmidt, and S. Glunz, et al., “Improved parameterization of Auger recombination in silicon”, Energy Procedia, vol. 27, pp. 88-94, 2012.
[12]A. Matsuda, M. Takai and T. Nishimoto, “Control of plasma chemistry for preparing highly stabilized amorphous silicon at high growth rate”, Solar Energy &Solar Cells, vol. 78, 2003.
[13]S. Dauwe, Low-temperature Surface Passivation of Crystalline Silicon and Its Application to the Rear Side of Solar Cells, harderberg, 2004.
[14]M. Kerr and A. Cuevas, “General parameterization of Auger recombination in crystalline silicon”, Journal of Applied Physics, Vol. 91, pp. 2473-2481, 2002.
[15]W. Shockley and W. Read, “Statistics of the Recombinations of Holes and Electrons”, Physical Review, Vol. 87, pp. 835–842, 1952.
[16] R. Hall, “Electron-Hole Recombination in Germanium”, Physical Review, Vol. 87, pp. 387–387, 1952.
[17] I. Martín, a M. Vetter, M. Garín, A. Orpella, C. Voz, J. Puigdollers, and R. Alcubilla et al., “Crystalline silicon surface passivation with amorphous SiCx:H films deposited by plasma-enhanced chemical-vapor deposition”, Journal of Applied Physics, Vol. 98, pp. 114912-114921, 2005.
[18]R. Sinton and A. Cuevas, “Contactless determination of current–voltage characteristics and minority-carrier lifetimes in semiconductors from quasi-steady-state photoconductance data”, Applied Physics Letters, Vol. 69, pp. 2510-2513, 1996.
[19]H. Nagel, C. Berge, and A. G. Aberle, “Generalized analysis of quasi-steady-state and quasi-transient measurements of carrier lifetimes in semiconductors”, Journal of Applied Physics, Vol. 86, pp. 6218-6221, 1999.
[20] M. Quirk and J. Serda, Semiconductor Manufacturing Technology, Ch.11 Deposition, 2001.
[21] 莊達人,VLSI 製造技術,高立圖書有限公司,1996.
[22]J. Venables, “Nucleation and Growth of Thin films”, Reports on Progress in Physics, Vol. 47, pp. 399-459, 1984.
[23] A. Matsuda, M. Takai, T. Nishimoto and M. Kondo et al., “Control of plasma chemistry for preparing highly stabilized amorphous silicon at high growth rate”, Solar Energy &Solar Cells, Vol. 78, pp. 3-26, 2003.
[24]A. Matsuda, “Thin-Film Silicon-Growth Process and Solar Cell Application”, Japanese Journal of Applied Physics, Vol. 43, pp. 7909–7920, 2004.
[25]Y. Ruoche and L. Kuixun, Relative abundance ratio of SiH2 and SiH3 radicals in the course of silane radio-frequency glow discharge, 1997.
[26] M. Kishner, “On the balance between silylene and silyl radicals in rf glow discharges in silane: The effect on deposition rates of a-Si:H”, Journal of Applied Physics, Vol. 62, pp. 2803–2811, 1987.
[27] A. Triska, D. Dennison, and H. Fritzsche, “Hydrogen content in amorphous-Ge and Si prepared by RF decomposition of GeH4 and SiH4”, Bulletin of American Physics Society, vol. 20, pp. 392-397, 1975.
[28]R.Schrop and M.Zeman, Amorphous and Microcrystalline Silicon Solar Cells: Modeling, Materials and Device Technology, Kluwer Academic, Boston, 1998.
[29]J. Robertson, “Growth mechanism of hydrogenated amorphous silicon” Journal of Non-Crystalline Solids, Vol. 266-269, pp. 79–83, 2000.
[30]H. Sterling and R. Swann, “Chemical vapour deposition promoted by r.f. discharge”, Solid-State Electronics, Vol. 8, pp. 653-654, 1965.
[31] D. Staebler and C. Wronski, “Reversible conductivity changes in discharge-produced amorphous Si”, Applied Physics Letters, Vol.31, pp.292–294, 1977.
[32] SANYO North America Corporation. Basic Structure of a HIT Cell. http://us.sanyo.com/Solar/SANYO-HIT-Technology.
[33] T. Müller, Heterojunction Solar Cells (a-Si/c-Si): Investigations on PECV Deposited Hydrogenated Silicon Alloys for Use as High-Quality Surface Passivation and Emitter/BSF, Logos Verlag Berlin GmbH, 2009.
[34] H. Fujiwara and M. Kondo, “Impact of epitaxial growth at the heterointerface of a-Si:H/c-Si solar cells”, Applied Physics Letters, Vol. 90, pp. 013503-013506, 2007.
[35] F. Zignani, A. Desalvo, E. Centurioni, D. Iencinella, R. Rizzoli, C. Summonte, A. Migliori et al., “Silicon heterojunction solar cells with p nanocrystalline thin emitter on monocrystalline substrate”, Thin Solid Films, Vol. 451–452, pp. 350–354, 2004.
[36]H. Fujiwara and M. Kondo, “Real-time monitoring and process control in amorphous/crystalline silicon heterojunction solar cells by spectroscopic ellipsometry and infrared spectroscopy”, Applied Physics Letters, Vol. 86, pp. 032112-032115, 2005.
[37] J. Ge, Z. Ling, J. Wong, T. Mueller and A. Aberle et al., “Optimisation of Intrinsic a-Si:H Passivation Layers in Crystalline-amorphous Silicon Heterojunction Solar Cells”, Energy Procedia, Vol. 15, pp. 107-117, 2012.
[38] K. Kiriluk, J. Fields, B. Simonds, Y. Pai and P. Miller et al., “Highly efficient charge transfer in nanocrystalline Si:H solar cells”, Applied Physics Letters, Vol. 102, pp. 133101-133105, 2013.
[39]H. Yang, C. Wu, J. Huang and R. Ding et al., “Optical emission spectroscopy investigation on very high frequency plasma and its glow discharge mechanism during the microcrystalline silicon deposition”, Thin Solid Films, Vol. 472, pp. 125–129, 2005.
[40]P. Kumar, F. Zhu and A. Madan, “Electrical and structural properties of nano-crystalline silicon intrinsic layers for nano-crystalline silicon solar cells prepared by very high frequency plasma chemical vapor deposition”, International Journal of Hydrogen Energy, Vol. 33, pp. 3938–3944, 2008.
[41] S. Ram, L. Kroely, S. Kasouit, P. Bulkin, and P.Roca et al., “Plasma emission diagnostics during fast deposition of microcrystalline silicon thin films in matrix distributed electron cyclotron resonance plasma CVD system”, physica status solidi©, Vol. 7, pp. 553–556, 2010.
[42] S. Lien, Y. Chang, Y. Cho, J. Wang and K. Weng et al., “Characterization of HF-PECVD a-Si:H thin film solar cells by using OES studies”, Journal of Non-Crystalline Solids, Vol. 357, pp.161–164, 2011.
[43] Y. Fukuda, Y. Sakuma, C. Fukai, Y. Fujimura, K. Azumab and H. Shirai et al., “Optical emission spectroscopy study toward high rate growth of microcrystalline silicon”, Thin Solid Films, Vol. 386, pp. 256–260, 2001.
[44] A. Matsuda, “Growth mechanism of microcrystalline silicon obtained from reactive plasmas”, Thin Solid Films, Vol. 337, pp. 1-2, 1999.
[45] H. Yang, C. Wu, J. Huang and R. Ding et al., “Optical emission spectroscopy investigation on very high frequency plasma and its glow discharge mechanism during the microcrystalline silicon deposition”, Thin Solid Films, Vol. 472, pp. 125–129, 2005.
[46] H. Hsiao, H. Hwang, A. Yang, L. Chen and T. Yew et al., “Study on low temperature facetting growth of polycrystalline silicon thin films by ECR downstream plasma CVD with different hydrogen dilution”, Applied Surface Science, Vol. 142, pp. 316–321, 1999.
[47]M. Takai, T. Nishimoto, M. Kondo and A. Matsuda et al., “Effect of higher-silane formation on electron temperature in a silane glow-discharge plasma”, Applied Physics Letters, Vol. 77, pp. 18-22, 2000.
[48] Z. Wua, J. Sun, Q. Lei, Y. Zhao, X. Geng and J. Xi et al., “Analysis on pressure dependence of microcrystalline silicon by optical emission spectroscopy ”, Physica E, Vol. 33, pp. 125–129, 2006.
[49]A. Matsuda, M. Takai, T. Nishimoto and M. Kondo et al., “Control of plasma chemistry for preparing highly stabilized amorphous silicon at high growth rate”, Solar Energy Materials and Solar Cells, Vol. 78, pp. 3–26, 2003.
[50]K. Saito and M. Kondo, “Investigation of crystalline orientation factor in microcrystalline silicon thin film deposition”, physica status solidi (a), Vol. 207, pp. 535–538, 2010.
[51]M. Kitagawa, K.Setsune and Y. Manabe, “Properties of Hydrogenated Amorphous Silicon Prepared by ECR Plasma CVD Method”, Japanese Journal of Applied Physics, Vol. 27, pp. 2026–2031, 1988.
[52]P. Tristant, Z. Ding, Q. B. Trang Vinh, H. Hidalgo, J. Jauberteau, J. Desmaison, and C. Dong et al., “Microwave Plasma Enhanced CVD of Aluminum Oxide Films:OES Diagnostics and Influence of the RF Bias”, Thin Solid Films, Vol. 390, pp. 51–58, 2001.
[53] E. Campbell, M. Rosen, D. Phillion and R. Price et al., “Laser plasma coupling in long pulse, long scale length plasmas”, Applied Physics Letters,Vol. 43, pp. 54-59, 1983.
[54] A. Francis, U. Czarnetzki, H. Döbele, and N. Sadeghi et al., “Quenching of the 750.4 nm argon actinometry line by H2 and several hydrocarbon molecules”, Applied Physics Letters, Vol. 71, pp. 37-96, 1997.
[55] 潘彥妤,「微晶矽薄膜製程之電漿放射光譜分析與其在太陽能電池之應用」,私立中原大學,碩士論文 ,2008年。
[56] T. Nishimoto, M. Takai, H. Miyahara, M. Kondo and A. Matsuda et al., “Amorphous silicon solar cells deposited at high growth rate”, Journal Non-Crystalline Solids, Vol. 299, pp. 1116–1122, 2002.
[57] S. Guha, J. Yang, S. Jones, Y. Chan and D. Williamson et al., “Effect of microvoids on initial and light‐degraded efficiencies of hydrogenated amorphous silicon alloy solar cells”, Applied Physics Letters, Vol. 61, pp. 1444-1447, 1992.
[58]G. Jellison and F. Modine, “Parameterization of the optical functions of amorphous materials in the interband region”, Applied Physics Letters, Vol. 69, pp. 371-378, 1996.
[59]Q. Cheng, S. Xu and K. Ostrikov, “Localization and dynamic change of saponin in root tuber of cultivated Pseudostellaria heterophylla”, Nanotechnology, Vol. 20, pp. 1-5, 2009.
[60] W. Jackson, S. Kelso, C. Tsai and J. Allen et al., “Energy dependence of the optical matrix element in hydrogenated amorphous and crystalline silicon”, Physical Review B, Vol. 31, pp. 51-87, 1985.
[61]S. Bowden, V. Yelundur and A. Rohatgi, “Implied-Voc and Suns-Voc measurements in multicrystalline solar cells”, Conference Record of the Twenty-Ninth IEEE, pp. 371-374, 2002.
[62]楊德仁,太陽電池材料,化學工業出版社,2011年。
[63]S. Rossnagel, J. Cuomo and W. Westwood, Handbook of Plasma Processing Technology: Fundamentals, Etching, Deposition, and Surface Interactions, Noyes Publications, 1990.
[64]Oleg A. Popov, High Density Plasma Sources: Design, Physics, and Performance, Noyes Publications , 1995.
[65]R. A. Street, Hydrogenated Amophous Silicon, Cambridge University Press, New York (1991).
[66]莊嘉琛,太陽能工程-太陽電池篇,全華科技圖書股份有限公司印行(2007).
[67]林明獻,太陽能電池技術入門,全華科技圖書股份有限公司印行 (2008).
[68] A.Szekeres, M.Gartner, F. Vasiliu, M. Marinov, G.Beshkov, “Crystallization of a-si:H films by rapid thermal annealing”, Journal of Non-Crystalline Solid, Vol. 227, pp. 954-957, 1998.