| 研究生: |
王介光 Chieh-Kuang Wang |
|---|---|
| 論文名稱: |
溫度不敏感性之電動力學行為於毛細管區域電泳 Temperature-Insensitive Electrokinetic Behavior in Capillary Zone Electrophoresis |
| 指導教授: |
曹恒光
Heng-Kwong Tsao |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程與材料工程學系 Department of Chemical & Materials Engineering |
| 畢業學年度: | 92 |
| 語文別: | 中文 |
| 論文頁數: | 60 |
| 中文關鍵詞: | 電雙層 、電滲流 、電泳動 、毛細管區域電泳法 、焦耳熱效應 、非直接性測量法 |
| 外文關鍵詞: | On-Column detection, electrophoretic mobility, Joule heating, Indirect UV detection, Electroosmotic mobility, capillary zone electrophoresis |
| 相關次數: | 點閱:11 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在毛細管區域電泳實驗中,通常在高電壓下實驗會產生焦爾熱效應,其主要原因是因為毛細管內溫度控制及熱消散問題。
通常我們利用電壓和(電滲流或電泳動)泳動度作圖,在低壓下是符合歐姆定律,但在高壓下焦爾效應產生,隨著毛細管內部溫度無法有效的消散,造成管內溫度上升,進而使溶液黏度下降。我們經由簡單溫度分析去了解到毛細管內部的熱傳效應,發現電滲流泳動度和電流值呈現線性比例關係,而且可以忽略毛細管內焦爾效應和不均勻的熱對流效應。將這種把溫度效應相消的結果稱作溫度的不敏感性,類似Walden’s 定律可將黏度和電流值比率得到一常數的關係。我們設計一連串的實驗,去證實溫度不敏感性和電動力學性質的行為。最後我們建議要避免焦爾效應於不均勻的溫度控制下,最好是利用電流作為控制的主要參數,而非電壓。
Capillary zone electrophoresis generally suffers the Joule effect at relatively high driven voltage owing to the temperature control problem. In the plot of migration velocity against voltage, the electroosmotic (and electrophoretic) mobility remains a constant at lower voltage but becomes to grow at higher voltage. It is attributed to the reduction of the solvent viscosity caused by the temperature increase. A simple analytical theory is derived to show that the electroosmotic velocity is linearly proportional to the electric current regardless of the temperature profile inside the capillary due to Joule heating and non-uniform surrounding convection. This temperature-insensitive behavior is caused by the cancellation of the temperature effects such as the Walden’s rule for the constant product between solvent viscosity and electric conductivity. A series of experiments has been performed to confirm the temperature-insensitive electrokinetic behavior. Our results suggest that the Joule effect can be circumvented by controlling the electric current even under non-uniform surrounding convection.
1.Wenzhe Lu, Richard M, Cassidy, Anal. Chem. 65 (1993) 1694
2.Beat Krattiger, Gerard J. M. Bruin, Alfredo E. Bruno, Anal. Chem. 66 (1994) 1-8
3.Michael P. Harrold, Mary Jo Wajtusik, John Riviello, Patricia Henson,
J. Chromatog. 640 (1993) 463
4. Andrea Weston, Phyllis R. Brown, Peter Jandik, Allan L. Heckenberg, William R. Jones, J. Chromatog. 608 (1992) 395
5. Xiaohua Huang, Richard N. Zare, Anal. Chem. 63 (1991) 2193
6. Xiaohua Huang, Manuel J. Gordon, Richard N. Zare, Anal. Chem. 60 (1988) 375
7. Gerard Bondoux, Peter Jandik, William R. Jones, J. Chromatog. 602 (1992) 79
8. Jean-Louis Viovy, Rev. Mod. Phys. 72 (2000)
9. Gary W. Slater, Sylvain J. Hubert, Electrophoresis 21 (2000) 3873
10. Andrew G. Ewing, Ross A. Wallingford, Teresa M. Olegirowicz, Anal. Chem. 61 (1989) 292A
11. Zhongxi Zhao, Abul Malik, Milton L. Lee, Anal. Chem. 65 (1993) 2747
12. G. M. McLaughlin, J. A. Noln, J. L. Lindahl, R. H. Palmieri, K. M. Anderson, J. Liquid Chrom. 15 (1992) 961
13. Koji Otsuka, Shigeru Terebe, Teiichi Ando, J. Chromatog. 396 (1987) 350
14. Koji Otsuka, Shigeru Terebe, Teiichi Ando, J. Chromatog. 348 (1985) 39
15. Mikkers F. E., Everaerts F. M., Verheggen T., J. Chromatogr. 169 (1979), 11-20
16. Christine L. Copper, Journal of chemical Education. 75 (1998), 343-347
17. Baker D. R., Capillary electrophoresis,Wiley: New York (1995).chap 2
18. K. D. Lukacs, J. W. Jorgenson, J. High Res. Chromatog. 8 (1989), 407-411
19. Barbara B. VanOrman, Gary G. Liversidge, Gregory L. McIntire, Teresa M. Olefirowicz, Andrew G. Ewing, J. Microcol. Sep. 2 (1990), 176-180
20. Nolan A. Polson, Mark A. Hayes, Anal. Chem. June 1 (2001), 312-319
21. 淺談微晶片在生物科技之應用 電子月刊第八卷第五期90~95 楊崇熙
22. James W. Jorgenson, Krynn DeArman Lukacs, Anl. Chem. 53 (1981), 1298-1302
23. K. Swinney, D. J. Bronhop, Electrophoresis 22 (2001) 2032
24. M. E. Lacey, A. G. Webb, J. V. Sweedler, Anal chem. 74 (2002) 4583
25. K. K. Liu, K. L. Davis, M. D. Morris, Anal chem. 66 (1994) 3744
26. M.Chaudhari, T. M. Woudenberg, M. Albin, K. E. Goodson, J. Microelectromech . System 7 (1998) 345
27. S. L. Thomson, D. Maynes, J. Fluids Eng. 123 (2001) 293
28. D. Ross, M. Gaitan, L. E. Locacio, Anal chem. 73 (2001) 4117
29. E. Grushka, R. M. McCormick, J. J. Kirkland, Anal chem. 61 (1989) 241
30. J. H. Knox, Chromotagraphia 38 (1994) 207
31. W. A. Gobbie, C. F. Ivory, J. Chromatogr. 516 (1990) 191
32. S. Bello, P. G. Righetti, J. Chromatogr. 606 (1992) 95
33. C. Y. Tang, Yang, J. C. Chai, H. Q.Gong, Int. Heat Mass Transfer 47 (2004) 215
34. Y. J. Kang, C. Yang, X. Y. Huang, Int. J. Eng. Sci 40 (2002) 2203
35. Y. J. Kang, C. Yang, X. Y. Huang, J. Colloid Interface Sci. 253 (2002) 285
36. J. P. Hsu, C. Y. Kao, S. Tseng, C. J. Chen, J. Colloid Interface Sci. 248 (2002) 176
37. C. Yang, C. B. Ng, V. Chen , J. Colloid Interface Sci. 248 (2002) 524
38. C. Yang, D. Li, J. Colloid Interface Sci. 194 (1997) 95
39. N.A. Patenkar, H. H. Hu, Anal chem. 70(1998) 1870
40. J. R. Veraart, C. Gooijer, H. Lingeman, Chromatography 44 (1997) 129
41. R. J. Nelson, A. Paulus, A. S. Cohen, A. Guttman, B.L. Karger, J. Chromatogr. 480 (1989) 111
42. J. Collet, P. Gareil, J. Chromatogr. 716 (1995) 115
43. K. D. Altria, J. S. Howells, J. Chromatogr. 696 (1995) 341
44. K. D. Altria, David Elder, J. Chromatogr. 1023 (2004) 1