| 研究生: |
陳彥銘 Yen-Ming Chen |
|---|---|
| 論文名稱: |
用於廣義非同調區塊編碼MPSK的解碼演算法 Decoding Algorithms for Generalized Noncoherent Block-Coded MPSK |
| 指導教授: |
魏瑞益
Ruey-Yi Wei |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
資訊電機學院 - 通訊工程學系 Department of Communication Engineering |
| 畢業學年度: | 94 |
| 語文別: | 英文 |
| 論文頁數: | 85 |
| 中文關鍵詞: | 區塊編碼調變 、非同調偵測 、多重天線系統 、A*解碼法 |
| 外文關鍵詞: | noncoherent detection, multi-antenna system, block coded modulation, A* decoding algorithm |
| 相關次數: | 點閱:6 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在同調偵測下,用多層編碼的區塊編碼調變(BCM)是具有頻寬效益的編碼架構。最近一個新的用於非同調偵測的區塊編碼調變架構,稱作非同調區塊編碼MPSK (noncoherent block coded MPSK , NBC- MPSK)已被提出。非同調區塊編碼MPSK可輕易的由選擇適當的成份碼來設計。更進一步的,基於A*解碼法的用於非同調區塊編碼MPSK的最大相似解碼法也已被提出。
在本篇論文中,我們首先修正其最大相似解碼演算法以更進一步降低解碼複雜度,並與另一個近似最佳的具線性複雜度的非同調多階層解碼器做比較。接著我們提出用於非同調區塊編碼MPSK於多重天線系統下的推廣的最大相似以及降低複雜度的解碼演算法。更進一步的,我們將效能與文獻上的數種編碼架構做比較與整理。
For coherent detection, block coded modulation encoded by multilevel coding is a bandwidth efficient scheme. Recently, a novel block coded modulation scheme for noncoherent detection, called Noncoherent Block-Coded MPSK (NBC-MPSK), was proposed. The NBC-MPSK can be easily designed by properly choosing binary linear block codes as the component codes. Moreover, a maximum-likelihood (ML) decoding algorithm based on A* decoding algorithm for NBC-MPSK was also proposed.
In this thesis, we first modify the ML decoding algorithm to further reduce the decoding complexity, and compare it with a near-optimal linear-complexity noncoherent multistage decoder. Then we propose ML and complexity-reduced decoding algorithms for the generation of NBC-MPSK on multi-antenna system. Furthermore, we compare the error performance with several codes in the literature.
[1] G. Ungerboeck, “Channel coding with multilevel/phase signals,” IEEE Trans. Inform. Theory, vol. 28, pp. 55-67, Jan 1982.
[2] R. Knopp and H. Leib, “M-ary phase coding for the noncoherent AWGN channel,” IEEE Trans. Inform. Theory, vol. 40, pp. 1968-1984, Nov. 1994.
[3] F.W. Sun and H. Leib, “Multiple-phase codes for detection without carrier phase reference,” IEEE Trans. Inform. Theory, vol. 44, pp. 1477-1491, July 1998.
[4] R.Y. Wei, “Noncoherent block-coded MPSK,” IEEE Trans. Commun. , vol. 53, pp. 978-986, June 2005.
[5] Chia-Chan Kuo, ”Maximum-Likelihood Decoding Algorithms for Noncoherent Block Coded MPSK,” M.S. thesis, National Central University, R.O.C., 2005.
[6] R.Y. Wei, “Noncoherent spce-time block coded modulation,” in Proc. IEEE International Conference on Communications (ICC), Paris, June. 2004.
[7] N.J. Nilsson, Principles of Artificial Intelligence. Palo Alto, CA: Tioga Publishing Co., 1980.
[8] L. Ekroot and S. Dolinar, “A* Decoding of Block Codes,” IEEE Trans. Commun., vol. 44, pp. 1052-1056, Sept. 1996.
[9] J.G. Proakis, Digital Communications 2nd ed. New York: McGraw-Hill, 稍 1989.
[10] D. Divsalar and M.K. Simon, “Multiple-symbol differential detection of MPSK,” IEEE Trans. Commun., vol. 38, pp. 300-308, 1990.
[11] K.M. Mackenthun, “A fast algorithm for multiple-symbol differential detection of MPSK,” IEEE Trans. Commun., vol. 42, pp. 1471-1474, Feb. 1994.
[12] O. Collins, “Coding beyond the computational cutoff rate,” Ph.D. dissertation, California Institute of Technology, Pasadena, CA, 1989.
[13] T.H. Cormen, C.E. Leiserson, and R.L. Rivest, Introduction to Algorithms. Cambridge, MA: The M.I.T Press, 1991.
[14] D. Warrier and U. Madhow, “Spectrally efficient noncoherent communication,” IEEE Trans. Inform. Theory, vol. 48, pp.651-668, Mar. 2002
[15] B.M. Hochwald and T.L. Marzetta, ”Unitary space-time modulation formultiple-antenna communications in Rayleigh flat fading,” IEEE Trans.Inform. Theory, vol. 46, pp. 543-564, Mar. 2000.
[16] B.M. Hochwald, T.L. Marzetta, T.J. Richardson, W. Sweldens, and R. Urbanke, ”Systematic design of unitary space-time constellations,” IEEE Trans. Inform. Theory, vol. 46, pp. 1962- 1973, Sept. 2000.
[17] T.L. Marzetta and B.M. Hochwald, “Capacity of a mobile multiple- antenna communication link in Rayleigh flat fading,” IEEE Trans. Inform. Theory, vol. 45, pp. 139-157, Jan. 1999.
[18] S.M. Alamouti, ”A simple transmitter diversity scheme for wireless communications,” IEEE J. Select. Areas Commun., vol. 16, pp. 1451- 1458, Oct. 1998.
[19] P. Dayal, M. Brehler, and M. K. Varanasi, “Leveraging coherent space- time codes for noncoherent communication via training,” IEEE Trans. Inform. Theory , vol. 50, pp. 2058-2080, Sep. 2004.
[20] B. Hassibi and B. M. Hochwald, “How much training is needed in multiple-antenna wireless links?,” IEEE. Trans. Inform. Theory, vol. 49, pp. 951–963, Apr. 2003.
[21] Y. Gong and K. B. Letaief, “Concatenated space-time block coding with trellis-coded modulation in fading channels,” IEEE Trans. Wireless Commun., vol. 1, pp. 580-590, Oct. 2002.
[22] V. Tarokh, A. Naguib, N. Seshadri, and A. R. Calderbank, “Space-time codes for high data rate wireless communication: Performance criteria in the presence of channel estimation errors, mobility, and multiple paths,” IEEE Trans. Commun., vol. 47, pp. 199–207, Feb. 1999.
[23] Z. Chen, B. Vucetic, J. Yuan and K.L. Lo, ”Space-time trellis codes with two, three and four transmit antennas in quasi-static flat fading channels,” in Proc. IEEE ICC 2002, pp. 1589-1595, 2002.
[24] H. Jafarkhani and N. Seshadri, “Super-orthogonal space-time trellis codes,” IEEE Trans. Inform. Theory, vol. 49, pp. 937–950, Apr. 2003.