跳到主要內容

簡易檢索 / 詳目顯示

研究生: 陳彥銘
Yen-Ming Chen
論文名稱: 用於廣義非同調區塊編碼MPSK的解碼演算法
Decoding Algorithms for Generalized Noncoherent Block-Coded MPSK
指導教授: 魏瑞益
Ruey-Yi Wei
口試委員:
學位類別: 碩士
Master
系所名稱: 資訊電機學院 - 通訊工程學系
Department of Communication Engineering
畢業學年度: 94
語文別: 英文
論文頁數: 85
中文關鍵詞: 區塊編碼調變非同調偵測多重天線系統A*解碼法
外文關鍵詞: noncoherent detection, multi-antenna system, block coded modulation, A* decoding algorithm
相關次數: 點閱:6下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在同調偵測下,用多層編碼的區塊編碼調變(BCM)是具有頻寬效益的編碼架構。最近一個新的用於非同調偵測的區塊編碼調變架構,稱作非同調區塊編碼MPSK (noncoherent block coded MPSK , NBC- MPSK)已被提出。非同調區塊編碼MPSK可輕易的由選擇適當的成份碼來設計。更進一步的,基於A*解碼法的用於非同調區塊編碼MPSK的最大相似解碼法也已被提出。
    在本篇論文中,我們首先修正其最大相似解碼演算法以更進一步降低解碼複雜度,並與另一個近似最佳的具線性複雜度的非同調多階層解碼器做比較。接著我們提出用於非同調區塊編碼MPSK於多重天線系統下的推廣的最大相似以及降低複雜度的解碼演算法。更進一步的,我們將效能與文獻上的數種編碼架構做比較與整理。


    For coherent detection, block coded modulation encoded by multilevel coding is a bandwidth efficient scheme. Recently, a novel block coded modulation scheme for noncoherent detection, called Noncoherent Block-Coded MPSK (NBC-MPSK), was proposed. The NBC-MPSK can be easily designed by properly choosing binary linear block codes as the component codes. Moreover, a maximum-likelihood (ML) decoding algorithm based on A* decoding algorithm for NBC-MPSK was also proposed.
    In this thesis, we first modify the ML decoding algorithm to further reduce the decoding complexity, and compare it with a near-optimal linear-complexity noncoherent multistage decoder. Then we propose ML and complexity-reduced decoding algorithms for the generation of NBC-MPSK on multi-antenna system. Furthermore, we compare the error performance with several codes in the literature.

    1 Introduction 1 2 Reviews of NBC-MPSK and its ML Decoding Algorithm 4 2.1 A Review of NBC-MPSK 5 2.1.1 Noncoherent Detection 5 2.1.2 Code Construction 6 2.1.3 Multistage Decoding with The Estimate of Channel Phase 12 2.2 A Review of ML Decoding Algorithm for NBC-MPSK 16 2.2.1 Binary-Tree Representation 16 2.2.2 The Heuristic Function 18 2.2.3 Sorting Received Symbols 20 2.2.4 Decoding Process 21 3 Decoding Algorithms for NBC-MPSK 29 3.1 Modified ML Decoding Algorithm 30 3.2 Near-Optimal Linear-Complexity Noncoherent Multistage Decoding 37 4 Decoding Algorithms for NSTBC-MPSK 40 4.1 Introduction of NSTBC-MPSK 41 4.1.1 Review of Unitary Space-Time Modulation 41 4.1.2 Code Construction 43 4.2 ML Decoding Algorithm 46 4.3 Complexity-Reduced Decoding Algorithm 51 5 Simulation Results of Error Performance 56 5.1 Comparing with Training Code 56 5.2 Comparing with Other Training-Based Codes 70 6 Conclusions and Future Works 82 References 83

    [1] G. Ungerboeck, “Channel coding with multilevel/phase signals,” IEEE Trans. Inform. Theory, vol. 28, pp. 55-67, Jan 1982.
    [2] R. Knopp and H. Leib, “M-ary phase coding for the noncoherent AWGN channel,” IEEE Trans. Inform. Theory, vol. 40, pp. 1968-1984, Nov. 1994.
    [3] F.W. Sun and H. Leib, “Multiple-phase codes for detection without carrier phase reference,” IEEE Trans. Inform. Theory, vol. 44, pp. 1477-1491, July 1998.
    [4] R.Y. Wei, “Noncoherent block-coded MPSK,” IEEE Trans. Commun. , vol. 53, pp. 978-986, June 2005.
    [5] Chia-Chan Kuo, ”Maximum-Likelihood Decoding Algorithms for Noncoherent Block Coded MPSK,” M.S. thesis, National Central University, R.O.C., 2005.
    [6] R.Y. Wei, “Noncoherent spce-time block coded modulation,” in Proc. IEEE International Conference on Communications (ICC), Paris, June. 2004.
    [7] N.J. Nilsson, Principles of Artificial Intelligence. Palo Alto, CA: Tioga Publishing Co., 1980.
    [8] L. Ekroot and S. Dolinar, “A* Decoding of Block Codes,” IEEE Trans. Commun., vol. 44, pp. 1052-1056, Sept. 1996.
    [9] J.G. Proakis, Digital Communications 2nd ed. New York: McGraw-Hill, 稍 1989.
    [10] D. Divsalar and M.K. Simon, “Multiple-symbol differential detection of MPSK,” IEEE Trans. Commun., vol. 38, pp. 300-308, 1990.
    [11] K.M. Mackenthun, “A fast algorithm for multiple-symbol differential detection of MPSK,” IEEE Trans. Commun., vol. 42, pp. 1471-1474, Feb. 1994.
    [12] O. Collins, “Coding beyond the computational cutoff rate,” Ph.D. dissertation, California Institute of Technology, Pasadena, CA, 1989.
    [13] T.H. Cormen, C.E. Leiserson, and R.L. Rivest, Introduction to Algorithms. Cambridge, MA: The M.I.T Press, 1991.
    [14] D. Warrier and U. Madhow, “Spectrally efficient noncoherent communication,” IEEE Trans. Inform. Theory, vol. 48, pp.651-668, Mar. 2002
    [15] B.M. Hochwald and T.L. Marzetta, ”Unitary space-time modulation formultiple-antenna communications in Rayleigh flat fading,” IEEE Trans.Inform. Theory, vol. 46, pp. 543-564, Mar. 2000.
    [16] B.M. Hochwald, T.L. Marzetta, T.J. Richardson, W. Sweldens, and R. Urbanke, ”Systematic design of unitary space-time constellations,” IEEE Trans. Inform. Theory, vol. 46, pp. 1962- 1973, Sept. 2000.
    [17] T.L. Marzetta and B.M. Hochwald, “Capacity of a mobile multiple- antenna communication link in Rayleigh flat fading,” IEEE Trans. Inform. Theory, vol. 45, pp. 139-157, Jan. 1999.
    [18] S.M. Alamouti, ”A simple transmitter diversity scheme for wireless communications,” IEEE J. Select. Areas Commun., vol. 16, pp. 1451- 1458, Oct. 1998.
    [19] P. Dayal, M. Brehler, and M. K. Varanasi, “Leveraging coherent space- time codes for noncoherent communication via training,” IEEE Trans. Inform. Theory , vol. 50, pp. 2058-2080, Sep. 2004.
    [20] B. Hassibi and B. M. Hochwald, “How much training is needed in multiple-antenna wireless links?,” IEEE. Trans. Inform. Theory, vol. 49, pp. 951–963, Apr. 2003.
    [21] Y. Gong and K. B. Letaief, “Concatenated space-time block coding with trellis-coded modulation in fading channels,” IEEE Trans. Wireless Commun., vol. 1, pp. 580-590, Oct. 2002.
    [22] V. Tarokh, A. Naguib, N. Seshadri, and A. R. Calderbank, “Space-time codes for high data rate wireless communication: Performance criteria in the presence of channel estimation errors, mobility, and multiple paths,” IEEE Trans. Commun., vol. 47, pp. 199–207, Feb. 1999.
    [23] Z. Chen, B. Vucetic, J. Yuan and K.L. Lo, ”Space-time trellis codes with two, three and four transmit antennas in quasi-static flat fading channels,” in Proc. IEEE ICC 2002, pp. 1589-1595, 2002.
    [24] H. Jafarkhani and N. Seshadri, “Super-orthogonal space-time trellis codes,” IEEE Trans. Inform. Theory, vol. 49, pp. 937–950, Apr. 2003.

    QR CODE
    :::