| 研究生: |
胡庭玉 Ting-Yu Hu |
|---|---|
| 論文名稱: |
超晶格緩衝層對成長於矽基板氮化鎵高電子遷移率電晶體動態特性之影響 Effects of Superlattice Buffer Layers on the Dynamic Characteristics of GaN-on-Si High Electron Mobility Transistors |
| 指導教授: |
綦振瀛
Jen-Inn Chyi |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
資訊電機學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2020 |
| 畢業學年度: | 108 |
| 語文別: | 中文 |
| 論文頁數: | 74 |
| 中文關鍵詞: | 氮化鎵 、超晶格 、高電子遷移率電晶體 、動態特性 |
| 相關次數: | 點閱:8 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究包括製作具有不同AlxGa1-xN/AlyGa1-yN超晶格緩衝層之氮化鎵高電子遷移率電晶體(High Electron Mobility Transistor, HEMT),並探討不同超晶格緩衝層對成長於矽基板之GaN元件動態特性之影響。
第一部份之研究標的為成長於矽基板之AlInN/GaN HEMTs,緩衝層的動態響應很大程度上取決於應力緩衝層中超晶格的成分、厚度和位置,應力釋放可使緩衝層之缺陷密度下降。研究顯示具超晶格緩衝層之元件對垂直崩潰電壓方面有顯著的改善,也減緩電子陷捕效應。在背閘極負偏壓量測垂直遲滯曲線中,缺陷密度低的元件有最低的緩衝層遲滯曲線,表示電子陷捕最少。脈衝量測指出不同靜態偏壓點下(Vgsq, Vdsq) = (-1, 5)、(-1, 10)、(-4, 0),缺陷密度與電流崩塌效應相關,缺陷密度低的元件其電流回復狀況越佳。當缺陷密度從10.55×10^8 cm-2降至5.4×10^8 cm-2,垂直崩潰電壓可從360 V提高至446 V。
第二部份之研究標的為成長於矽基板之AlGaN/GaN HEMTs,分別將不同對數之Al0.8Ga0.2N/Al0.2Ga0.8N超晶格置於緩衝層中,超晶格對數之組合由50對增至80對,緩衝層缺陷密度從8.8×10^8 cm-2降至8.01×10^8 cm-2,垂直崩潰電壓可達544 V。於此部分缺陷密度最低的元件在動態特性方面,由脈衝量測檢視電流崩塌對元件電性之影響,隨著對數的增加,顯示缺陷密度低的元件其電流回復狀況越好。
最後利用電流暫態頻譜計算出電子脫阱的時間常數並萃取活化能。以兩種條件的關閉狀態(off-state)應力偏壓後,50對的超晶格元件其活化能分別為0.37 eV與0.30 eV;60對的元件其活化能分別為0.50 eV與0.32 eV;80對的元件其活化能分別為0.35 eV與0.23 eV。推估缺陷位置可能位於GaN buffer layer。這項對Ⅲ族氮化物HEMT-on-Si的緩衝層動態研究,有望幫助提升GaN HEMTs高功率元件的可靠度。
This study aims to investigate the effects of different AlxGa1-xN/AlyGa1-yN superlattice(SL) buffer layers on the dynamic characteristics of AlInN/GaN and AlGaN/GaN high electron mobility transistors (HEMTs) grown on low-resistivity silicon substrates.
The first part of the study focuses on the dynamic buffer response of AlInN/GaN HEMTs. The dynamic response of the buffer layer largely depends on the composition, thickness and position of the superlattice in the stress-mitigating buffer. It is observed that devices with superlattice buffer exhibit significant improvements in vertical breakdown voltage, and charge trapping effect. Negative back-gating measurements show the lowest buffer current hysteresis in the sample with the lowest dislocation density, indicating least charge trapping in the sample. Additionally, pulsed current-voltage measurements with various quiescent biases such as (Vgsq, Vdsq) = (-1, 5), (-1, 10) and (-4, 0) indicate a clear correlation between dislocation density and current collapse in the devices under study, where lower density of dislocation in the GaN buffer results in better recovery of the drain current. The vertical breakdown voltage increases from 360 V to 446 V as the dislocation density decreases from 10.55×10^8 cm-2 to 5.4×10^8 cm-2, respectively.
The second part of the study focuses on AlGaN/GaN HEMTs grown with different pairs of Al0.8Ga0.2N/Al0.2Ga0.8N superlattice layers. As the superlattice pair increases from 50 to 80 pairs, the dislocation density decreases from 8.8×10^8 cm-2 to 8.01×10^8 cm-2, resulting in an increase of vertical breakdown voltage up to 544 V. Moreover, pulsed I-V measurements show better current recovery as the superlattice increases from 50 to 80 pairs.
Finally, current transient spectroscopy method is used to determine the time constant of electron detrapping and its activation energy. The activation energies, 0.37 eV/0.30 eV, of the device with 50 pairs of SL, 0.50 eV/0.32 eV, of the device with 60 pairs of SL, and 0.35 eV/0.23 eV, of the device with 80 pairs of SL, are extracted from the current recovery curves after two different off-state stress conditions. A detailed analysis of the current transient spectroscopy indicates the trap locations in the GaN buffer layer. This systematic and detailed study of the dynamic buffer response of GaN HEMTs-on-Si is beneficial to the development of high reliability GaN HEMTs for high power device applications.
[1]Y. Zhou, D. Wang, C. Ahyi, C.-C. Tin, J. Williams, M. Park, N. M. Williams, A. Hanser, “High breakdown voltage schottky rectifier fabricated on bulk n-GaN substrate”, Solid-State Electronics, Vol. 50, pp. 1744-1747, 2006.
[2]O. Ambacher, J. Smart, J. R. Shealy, N. G. Weimann, K. Chu, M. Murphy, W. J. Schaff and L. F. Eastman, R. Dimitrov, L. Wittmer, M. Stutzmann, W. Rieger, and J. Hilsenbeck, “Two-dimensional electron gases induced by spontaneous and piezoelectric polarization charges in N- and Ga-face AlGaN/GaN heterostructures”, Journal of Applied Physics, Vol. 85, No. 6, pp. 3222-3233, 1999.
[3]A. Dadgar, A. Strittmatter, J. Bläsing, M. Poschenrieder, O. Contreras, P. Veit, T. Riemann, F. Bertram, A. Reiher, A. Krtschil, A. Diez, T. Hempel, T. Finger, A. Kasic, M. Schubert, D. Bimberg, F. A. Ponce, J. Christen, and A. Krost, “Metalorganic chemical vapor phase epitaxy of gallium‐nitride on silicon”, Physica Status Solidi (c), Vol. 0, pp. 1583-1606, 2003.
[4]Y. Ni, Z. He, F. Yang, D. Zhou, Y. Yao, G. Zhou, Z. Shen, J. Zhong, Y. Zhen, Z. Wu, B. Zhang, and Y. Liu, “Effect of AlN/GaN superlattice buffer on the strain state in GaN-on-Si(111) system”, Japanese Journal of Applied Physics, Vol. 54, 2015.
[5]J. R. Gong, C. W. Huang, S. F. Tseng, T. Y. Lin, K. M. Lin, W. T. Liao, Y. L. Tsai, B. H. Shi, C. L. Wang, “Behaviors of AlxGa1−xN (0.5⩽x⩽1.0)/GaN short period strained-layer superlattices on the threading dislocation density reduction in GaN films”, Journal of Crystal Growth, Vol. 260, pp. 73-78, 2004.
[6]Z. Liu, X. L. Wang, J. X. Wang, G. X. Hu, L. C. Guo and J. M. Li, “The influence of AlN/GaN superlattice intermediate layer on the properties of GaN grown on Si (111) substrates”, Chinese Physics, Vol. 16, pp. 1467-1471, 2007.
[7]L. W. Sang, Z. X. Qin, H. Fang, X. R. Zhou, Z. J. Yang, B. Shen, and G. Y. Zhang, “Study on threading dislocations blocking mechanism of GaN∕AlxGa1−xN superlattices”, Applied Physics Letters, Vol. 92, 2008.
[8]Z. Chen, L. Li, Y. Zheng, Y. Ni, D. Zhou, L. He, F. Yang, L. He, Z. Wu, B. Zhang and Y. Liu, “Influence of the AlN/GaN superlattices buffer thickness on the electrical properties of AlGaN/GaN HFET on Si substrate”, 2016 SSLChina: IFWS, pp. 89-92, Beijing, China, 2016.
[9]Q. Yang, Z. Li, L. Pan, W. Luo, X. Dong, “Role of different kinds of superlattices on the strain engineering of GaN films grown on Si (111)”, Superlattices and Microstructures, Vol. 109, pp. 249-253, 2017.
[10]A. Tajalli, M. Meneghini, R. Kabouche, I. Abid, M. Zegaoui, R. Püsche, J. Derluyn, S. Degroote, M. Germain, F. Medjdoub, G. Meneghesso, “Superlattice GaN-on-silicon heterostructures with low trapping in 1200 V”, WOCSDICE 2019, Cabourg, France, Jun 2019.
[11]J. Su, E. A. Armour, B. Krishnan, S. M. Lee, and G. D. Papasouliotis, “Stress engineering with AlN/GaN superlattices for epitaxial GaN on 200 mm silicon substrates using a single wafer rotating disk MOCVD reactor”, Journal of Materials Research, Vol. 30, pp. 2846-2858, 2015.
[12]Alan Wadsworth, The Parametric Measurement Handbook, 3rd Edition, July, 2013.
[13]陳昱志,「矽基氮化鎵高電子遷移率電晶體通道層與緩衝層之成長與材料特性分析」,國立中央大學,碩士論文,民國108年。
[14]M. Ťapajna, R. J. T. Simms, Y. Pei, U. K. Mishra, and M. Kuball, “Integrated optical and electrical analysis: identifying location and properties of traps in AlGaN/GaN HEMTs during electrical stress”, IEEE Electron Device Letters, Vol. 31, No. 7, pp. 662-664, 2010.
[15]G. Meneghesso, M. Meneghini, D. Bisi, I. Rossetto, A. Cester, U. K Mishra and E. Zanoni, “Trapping phenomena in AlGaN/GaN HEMTs: a study based on pulsed and transient measurements”, Semiconductor Science and Technology, Vol. 28, No. 7, pp. 1-8, 2013.
[16]J. Hu, S. Stoffels, S. Lenci, B. Bakeroot, R. Venegas, G. Groeseneken, and S. Decoutere, “Current transient spectroscopy for trapping analysis on Au-free AlGaN/GaN Schottky barrier diode”, Applied Physics Letters, Vol. 106, 2015.
[17]M. Meneghini, P. Vanmeerbeek, R. Silvestri, S. Dalcanale, A. Banerjee, D. Bisi, E. Zanoni, G. Meneghesso, and P. Moens, “Temperature-dependent dynamic RON in GaN-based MIS-HEMTs: role of surface traps and buffer leakage”, IEEE Transactions on Electron Devices, Vol. 62, pp. 782-787, 2015.
[18]M. J. Anand, G. I. Ng, S. Arulkumaran, B. Syamal and X. Zhou, “Distribution of trap energy level in AlGaN/GaN high-electron-mobility transistors on Si under ON-state stress”, Applied Physics Express, Vol. 8, No. 10, 2015.
[19]X. Zheng, S. Feng and Y. Zhang, “A current-transient method for identifying the spatial positions of traps in GaN-based HEMTs”, 2018 IEEE International Conference on Electron Devices and Solid State Circuits (EDSSC), Shenzhen, China, 2018.
[20]J. Joh and J. A. del Alamo, “A current-transient methodology for trap analysis for GaN high electron mobility transistors”, IEEE Transactions on Electron Devices, Vol. 58, No. 1, pp. 132-140, 2011.
[21]D. Bisi, M. Meneghini, M. V. Hove, D. Marcon, S. Stoffels, T.-L. Wu, S. Decoutere, G. Meneghesso, and E. Zanoni, “Trapping mechanisms in GaN-based MIS-HEMTs grown on silicon substrate”, Phys. Status Solidi A, Vol. 212, No. 5, pp. 1122-1129, 2015.
[22]A. Khandelwal, G. Dutta, A. DasGupta and N. DasGupta, “Trapping phenomenon in AlInN/GaN HEMTs: a study based on drain current transient spectroscopy”, The Physics of Semiconductor Devices, Proceedings of IWPSD 2017, pp. 219-223, Delhi, India, 2017.
[23]D. K. Schroder, Semiconductor Material and Device Characterization, 3 rd Edition, John Wiley & Sons, Inc., New Jersey, 2006.