跳到主要內容

簡易檢索 / 詳目顯示

研究生: 羅尉賢
Wei-Hsien Lo
論文名稱: 以視訊為基礎之手寫簽名認證
Video-based Handwritten Signature Verification
指導教授: 鄭旭詠
Hsu-Yung Cheng
口試委員:
學位類別: 碩士
Master
系所名稱: 資訊電機學院 - 資訊工程學系
Department of Computer Science & Information Engineering
畢業學年度: 98
語文別: 中文
論文頁數: 54
中文關鍵詞: 簽名認證曲波變換移動能量圖
外文關鍵詞: curvelet transform, motion energy image, signature verification
相關次數: 點閱:9下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本篇論文提出以視訊為基礎進行手寫簽名認證,取代傳統使用的數位手寫板。原因為網路攝影機此項硬體設備比數位手寫板來得普及,較易取得也較便宜,可以降低成本的需求,並且在特徵資訊擷取上,能獲得的資訊也比數位手寫板來的多。傳統使用數位手寫板能擷取的特徵資訊主要集中在文字本身,但若使用網路攝影機,能擷取的資訊除了文字,還包含簽名者握筆姿勢的影像資訊。因此本篇論文提出兩種特徵資訊來進行簽名認證,一是以簽名文字為特徵的靜態資訊,使用曲波變換(curvelet transform)製作成特徵向量,另一是以簽名者握筆姿勢為特徵的動態資訊,使用motion energy image (MEI)製作成特徵向量,將使用上述兩種特徵資訊之認證流程串聯來進行手寫簽名認證,可得良好的結果錯誤接受率0%和錯誤拒絕率0.5%,在模仿簽名的部份錯誤接受率0.05%亦是如此。


    This paper proposes a video-based handwritten signature verification framework. When acquiring signature information, we use a webcam in substitution for a digitizing tablet. Because webcams are more prevalent and cheaper than digitizing tablets, using webcams as sensors can reduce the cost. In addition, the features extracted using a webcam also contain more information. In tradition handwritten signature verification, features extracted using a digitizing tablet are mainly trajectories. But for the features extracted using a webcam, we can acquire pen grasping posture information of the subscriber in addition to the trajectories of the signature. Therefore, in the proposed framework, we perform video-based handwritten signature verification using two different types of feature information. For the first type of feature, we perform curvelet transform on the subscriber’s writing trajectory to obtain static information. The second type of feature is dynamic information which is the pen grasping posture of the subscriber. The dynamic feature is represented by motion energy image (MEI). We cascade the classifiers using static information and dynamic information to perform handwritten signature verification. The proposed video-based handwritten signature verification framework achieves a low false acceptance rate of 0% and false rejection rate 0.5% for our handwritten signature database without imitation signatures. For the database with imitation signatures, the proposed framework can also achieve a low false acceptance rate of 0.05%.

    摘要..............................................i Abstract.........................................ii 目錄............................................iii 附圖目錄..........................................v 附表目錄.........................................vi 第一章 緒論.......................................1 1-1研究目的..............................1 1-2文獻探討..............................1 1-3系統架構..............................4 第二章 相關技術...................................6 2-1 k-means..............................6 2-2粒子濾波器(particle filter).........7 2-3曲波變換(curvelet transform)........8 2-4 Motion Energy Image(MEI)..........11 2-5 Principal Component Analysis(PCA).12 2-6 Linear Discriminant Analysis(LDA).13 第三章 系統架構..................................16 3-1筆尖偵測與追蹤.......................16 3-2靜態資訊.............................20 3-3動態資訊.............................21 3-4訓練以及認證方法.....................24 第四章 實驗結果與討論............................26 4-1環境設定.............................27 4-2資料庫介紹...........................27 4-3特徵資訊的擷取.......................29 4-3.1 靜態資訊..........................29 4-3.2 動態資訊..........................29 4-4實驗結果.............................31 4-4.1 閥值的選擇........................31 4-4.2 真實簽名資料庫實驗結果............34 4-4.3 模仿簽名資料庫實驗結果............34 4-4.4 各種特徵資訊比較..................34 4-4.5 是否使用zero mean之比較...........37 第五章 結論與未來工作............................38 第六章 參考文獻..................................42

    [1]J. Fierrez, J. Ortega-Garcia, D. Ramos, J. Gonzalez-Rodriguez , ”HMM-based on-line signature verification: Feature extraction and signature modeling,” Pattern Recognition Letters, vol. 28, pp.2325–2334, 2007.
    [2]L. Yang, B. K. Widjaja and R. Prasad, ”Application of Hidden Markov Models for signature verification,” Pattern Recognition, vol. 28, no. 2, pp.161-170, 1995.
    [3]F. Aguilar, J. Krawczyk, S. O. Garcia, A. K. Jain, “Fusion of local and regional approaches for on-line signature verification,” Internat. Workshop on Biometric Recognition Systems, vol. 3781, pp.188–196, 2005.
    [4]A. P. Shanker, A.N. Rajagopalan, ”Off-line signature verification using DTW, ” Pattern Recognition Letters, vol. 28, pp.1407–1414, 2007.
    [5]L. L. Lee, T. Berger, and E. Aviczer, “Reliable on-line human signature verification systems,” IEEE Trans. on Pattern Analysis and Machine Intelligence, vol. 18, no. 6, pp. 643-647, 1996.
    [6]L. Bovino, S. Impedovo, G. Pirlo, and L. Sarcinella, “Multi-expert verification of hand-written signatures,” Proceedings of the Seventh Internat. Conference on Document Analysis and Recognition (ICDAR), 2003.
    [7]A. K. Jain, F. D. Griess, and S. D. Connell, “On-line signature verification,” Pattern Recognition, vol. 35, pp. 2963-2972, 2002.
    [8]T. Qu, A. E. Saddik, and A. Adler, “A stroke based algorithm for dynamic signature verification,” Electrical and Computer Engineering, 2004.
    [9]G. Dimauro, S. Impedovo, R. Modugno, G.Pirlo, and L. Sarcinella, “Analysis of stability in hand-written dynamic signatures,” Proceedings of the Eighth Internat. Workshop on Frontiers in Handwriting Recognition (IWFHR), 2002.
    [10]S. H. Kim, M. S. Park, and J. Kim, “Applying personalized weights to a feature set for on-line signature verification,” Third Internat. Conference on Document Analysis and Recognition (ICDAR), vol. 2, pp. 882, 1995.
    [11]J. Lee, H. S. Yoon, J. Soh, B. T. Chun, and Y. K. Chung, “Using geometric extrema for segment-to-segment characteristics comparison in online signature verification,” Pattern Recognition, vol. 37, pp. 93-103, 2004.
    [12]S. K. Zhou, R. Chellappa, and B. Moghaddam, “Visual tracking and recognition using appearance-adaptive models in particle filters, ” IEEE Trans. on Image Processing, vol. 13, no. 11, pp.1491-1506, Nov. 2004.
    [13]K. Nummiaro, E. Koller-Meier, and L. V. Gool, ” An adaptive color-based particle filter, ” Image and Vision Computing, vol. 21, pp.99–110, 2003.
    [14]M. S. Arulampalam, S. Maskell, N. Gordon, and T. Clapp, ” A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking, ” IEEE Trans. on Signal Processing, vol. 50, no. 2, pp.174-188, Feb. 2002.
    [15]D. L. Donoho, and M. R. Duncan, ” Digital curvelet transform: strategy, implementation and experiments,” Department of Statistics Stanford University, Nov. 1999.
    [16]I. J. Sumana, Md. M. Islam, D. Zhang, and G. Lu, “Content based image retrieval using curvelet transform,” Gippsland School of Information Technology.
    [17]E. Candes, L. Demanet, D. Donoho, and L. Ying, ” Fast Discrete Curvelet Transforms, ” Mar. 2006.
    [18]J. Han, and B. Bhanu, ”Individual recognition using gait energy image,” IEEE Trans. on Pattern Analysis and Machine Intelligence, vol. 28, no. 2, pp.316-322, Feb. 2006.
    [19]A. F. Bobic, and J. W. Davis, ”The recognition of human movement using temporal templates, ” IEEE Trans. on Pattern Analysis and Machine Intelligence, vol. 23, no. 3, pp.257-267, Mar. 2001.
    [20]J. M. Cormick, and M. Isard, ” Partitioned sampling, articulated objects, and interface-quality hand tracking, ” Compaq Systems Research Center.
    [21]H. Wang, D. Suter, K. Schindler, and C. Shen, “Adaptive object tracking based on an effective appearance filter, ” IEEE Trans. on Pattern Analysis and Machine Intelligence, vol. 29, no. 9, pp.1661-1667, Sep. 2007.
    [22]Q. Sumin, and H. Xianwu, “Hand tracking and gesture recognition by anisotropic kernel mean shift, ” IEEE Int. Conference Neural Networks & Signal Processing, pp.581-585, Jun. 2008.
    [23]P. Tissainayagam, and D. Suter, “Assessing the performance of corner detectors for point feature tracking applications, ” Image and Vision Computing, vol. 22, pp.663–679, 2004
    [24]C. Garcia, and G. Tziritas, “Face detection using quantized skin color regions merging and wavelet packet analysis, ” IEEE Trans. on Pattern Analysis and Machine Intelligence, vol. 1, no. 3, pp.264-277, Sep. 1999.
    [25]R. Cucchiara, C. Grana, M. Piccardi, A. Prati, and S. Sirotti, “Improving shadow suppression in moving object detection with HSV color information, ” IEEE Intelligent Transportation Systems Conference Proceedings, pp. 334-339, Aug. 2001.
    [26]R. Cucchiara, C. Grana, M. Piccardi, and A. Prati, “Detecting moving objects, ghosts, and shadows in video streams, ” IEEE Trans. on Pattern Analysis and Machine Intelligence, vol. 25, no. 10, pp.1337-1342, Oct. 2003.
    [27]N. Dalal, and B. Triggs, “Histograms of oriented gradients for human detection, ” IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp.1063-6919, 2005.
    [28]L. R. Rabiner, “A tutorial on Hidden Markov Models and selected applications in speech recognition,” Proc. IEEE, vol. 77, no. 2, pp.257–286, 1989.
    [29]M. Bressan, and J. Vitria, ”Nonparametric discriminant analysis and nearest neighbor classification,” Pattern Recognition Letters, vol. 24, pp.2743–2749, 2003.
    [30]H. Hikawa, and S. Matsubara, “Pseudo RBF network for position independent hand posture recognition system, ” Proceedings of International Joint Conference on Neural Networks, Aug. 2007.

    QR CODE
    :::