| 研究生: |
鄭文凱 WEN-KAI ZHENG |
|---|---|
| 論文名稱: |
以選擇性觸媒還原技術(SCR)降低石化業加熱爐氮氧化物排放之效率探討-以A廠為例 Application of Selective Catalytic Reduction (SCR) for Reducing NOx Emission from Petrochemical Industry - Case Study of Petrochemical Plant A |
| 指導教授: |
張木彬
Moo-Been Chang |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 環境工程研究所在職專班 Executive Master of Environmental Engineering |
| 論文出版年: | 2022 |
| 畢業學年度: | 110 |
| 語文別: | 中文 |
| 論文頁數: | 71 |
| 中文關鍵詞: | 石油化學加熱爐 、選擇性觸媒還原法 、氮氧化物 、去除效率 、排放量 |
| 外文關鍵詞: | Petrochemical heating furnace, Selective catalytic reduction, Nitrogen oxides, Removal efficiency, Emissions |
| 相關次數: | 點閱:12 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
氮氧化物對環境之衝擊廣泛且深遠,環保單位為改善空氣品質要求氮氧化物主要貢獻源進行排放量減量及改善,本研究選定北部某石化廠之原油常壓蒸餾程序(M01),探討以選擇性觸媒還原法(SCR)降低加熱爐後端排放管道之氮氧化物濃度及效率。研究顯示選擇性觸媒還原系統(SCR)於入口溫度250℃、進口風量972.5 Nm3/min、空間流速6,008 hr-1、入口氮氧化物濃度93.4 ppm、液氨注入量4.3 kg/hr,氨當量比為1.05之操作條件下達最高去除效率96%,且出口氮氧化物濃度為3.5 ppm、逃逸氨僅1.2 ppm,為維持去除效率達80%以上,當入口濃度介於49 ppm至77 ppm時,液氨注入量須維持在2.5 kg/hr至4.0 kg/hr,入口濃度介於80 ppm至95 ppm時,液氨注入量須維持在4.3 kg/hr至5.4 kg/hr,液氨注入量如低於上述區間去除效率將明顯降低,比對增設選擇性觸媒還原系統(SCR)前後之變化,氮氧化物於增設前平均出口濃度為66.3 ppm,增設後出口濃度為3.5 ppm至12.5 ppm,出口濃度減少81%至95%;氮氧化物排放量於增設前為144 ton/year,增設後為28 ton/year,減量116 ton/year;每年空污費於增設前1,440,000元,增設後280,000元,每年可減少1,160,000元。
The impact of nitrogen oxides (NOx) on the environment and human health is extensive and far-reaching. The government has taken action to improve the air quality by reducing NOx emissions from major stationary sources. This study investigates the efficacy of selective catalytic reduction (SCR) system installed in a crude oil distillation process (M01) of the petrochemical plant in northern Taiwan for reducing NOx emission via the analysis of operating parameters and CEMS data. The results show that as the SCR was operated with the temperature of 250℃, gas flow rate of 972.5 Nm3/min, space velocity of 6,008 hr-1, inlet NOx concentration of 93.4 ppm, ammonia injection rate of 4.3 kg/hr, and ammonia equivalence ratio of 1.05, the best NOx removal efficiency (96%) could be achieved. In the meantime, the outlet NOx concentration was reduced to 3.5 ppm and the ammonia slip was low (1.2 ppm). In order to maintain the NOx removal efficiency above 80%, when the inlet NOx concentration is between 49 ppm ~ 77 ppm, the ammonia injection rate needs to be maintained at 2.5 kg/hr ~ 4.0 kg/hr. As the inlet NOx concentration is between 80 ppm ~ 95 ppm, the ammonia injection rate should be controlled at 4.3 kg/hr ~ 5.4 kg/hr. If the ammonia injection rate is lower than the above-mentioned range, the removal efficiency will be significantly reduced. Comparing the differences before and after installing selective catalytic reduction (SCR) system, the outlet NOx concentration is reduced from 66.3 ppm to 3.5 ppm ~12.5 ppm. It decreases by 81%~95% and the NOx emission is reduced from 144 ton/year to 28 ton/year. Meanwhile, the air pollution fee is reduced from NT$ 1,440,000/yr to NT$ 280,000/yr.
Bosch, H., Janssen, F. “DeNOx catalyst review”, Catalyst Today, vol. 2, 1988, pp. 369-532
Bauerle, G.L., Wu, S.C., Nobe, K. “Catalytic reduction of nitric oxide with ammonia on vanadium oxide and iron-chromium oxide”, Industrial & Engineering Chemistry Product Research and Development, vol.14, 1975, pp 268-273.
.Devadas, M., Krocher, O., Elsener, M., Wokaun, A., Soger, N., Pfeifer, M., Demel, Y., Mussmann, L., “Influence of NO2 on the selective catalytic reduction of NO with ammonia over Fe-ZSM5”, Applied Catalysis B, vol. 67, 2006, pp. 187-196.
Forzatti, P. “Present status and perspectives in de-NOx SCR catalysis”, Applied Catalysis A, vol. 222, 2001, pp. 221-236.
Heck, R. “Catalytic abatement of nitrogen oxides–stationary applications”, Catalysis Today, vol. 53, 1999, pp. 519-523.
Inomata, M., Miyamoto, A., Murakami, Y. “Mechanism of the reaction between NO and NH3 on vanadium oxide catalyst in the presence of oxygen under the dilute gas condition”, Journal of Catalysis, vol. 62, 1980,pp. 140-148.
Kang, M., Park, H. J., Choi, S. J., Park, D. E., Yie, E. J. “Low-temperature catalytic reduction of nitrogen oxides with ammonia over supported manganese oxide catalysts”, Korean Joural of Chemical Engineering, vol. 24(1), 2007, pp 191-195.
Liu, C., Chen, L., Li, J., Ma, L., Arandiyan, H., Du, Y., Xu, J., Hao, J. “Enhancement of activity and sulfur resistance of CeO2 supported on TiO2-SiO2 for the selective catalytic reduction of NO by NH3”, Environmental Science & Technology, vol. 46, 2012, pp. 6182-6189.
Qi, G., Yang, R.T. “Low-temperature selective catalytic reduction of NO with NH3 over iron and manganese oxides supported on titania”, Applied Catalysis B, vol. 44, 2003, pp. 217-225.
Shen, B., Ma, H., He, C., Zhang, X. “Low temperature NH3–SCR over Zr and Ce pillared clay based catalysts”, Fuel Processing Technology, vol. 119, 2014, pp. 121-129.
Tang, X., Hao, J., Yi, H., Li, J. “Low-temperature SCR of NO with NH3 over AC/C supported manganese-based monolithic catalysts”, Catalysis Today, vol. 126, 2007, pp. 406-411.
Wu, Z., Jiang, B., Liu, Y., Zhao, W., Guan, B. “Experimental study on a low-temperature SCR catalyst based on MnOx/TiO2 prepared by sol–gel method”, Journal of Hazardous Materials, vol. 145, 2007, pp. 488-494.
Wu, Z., Jiang, B, Liu, Y.,Wang, H.,Jin, R. “Drift study of manganse /titania-based catalysts for low-temperature selective ctalytic reduction of NO with NH3”, Environmental Science & Technology, vol. 41, 2007, pp. 5812-5817
Wu, Z., Jin, R., Wang, H., Liu, Y. “Effect of ceria doping on SO2 resistance of Mn/TiO2 for selective catalytic reduction of NO with NH3 at low temperature”, Catalysis Communications, vol. 10, 2009, pp. 935-939.
Xie, G., Liu, Z., Zhu, Z., Liu, Q., Ge, J., Huang, Z. “Simultaneous removal of SO2 and NOx from flue gas using a CuO/Al2O3 catalyst sorbent II. promotion of SCR activity by SO2 at high temperatures”, Journal of Catalysis, vol. 224, 2004, pp. 42-49.
Xiong, S., Liao, Y., Xiao, X., Dang, H., Yang, S. “The mechanism of the effect of H2O on the low temperature selective catalytic reduction of NO with NH3 over Mn Fe spinel”, Catalysis Science & Technology, vol. 5(4), 2015, pp. 2132-2140.
Yang, S., Wang, C., Li, J., Yan, N., Ma, L., Chang, H. “Low temperature selective catalytic reduction of NO with NH3 over Mn–Fe spinel: Performance, mechanism and kinetic study”, Applied Catalysis B, vol. 110, 2011, pp. 71-80。
Yao, Y., Zhang, S.L., Zhong, Q., Liu, X.X. “Low-temperature selective catalytic reduction of NO over manganese supported on TiO2 nanotubes”, Journal of Fuel Chemistry and Technology, vol. 39, 2011, pp. 694-701.
吳青青,「以皂土及二氧化鈦混和擔體製備顆粒及蜂巢式觸媒用於低溫SCR處理NOx之研究」,碩士論文,國立交通大學環境工程研究所,2016。
吳以壯,「以選擇性觸媒還原技術同時去除NO及VOCs之效率測試研究」,碩士論文,國立交通大學環境工程研究所,2005
李文輝,「煉油加熱爐煙氣的污染及其防治」,中外能源,第8期,2004。
林家欣,「釩鈦觸媒孔隙擴散限制及表面酸性之研究」,博士論文,國立交通大學工程研究所,2003。
施佳昀,「以蜂巢型鐵氧磁體觸媒催化NH3-SCR去除NO之研究」,碩士論文,國立高雄科技大學化學工程與材料工程系碩士班,2018。
翁瑞裕,「選擇性觸媒還原(SCR)脫硝法」,工業污染防治,第57期,1996。
馬哲樹、范如花、劉少俊、劉炳霞,「SCR催化劑內流與反應過程的研究」,江蘇科技大學學報,第28卷,2014。
徐瑋廷,「以釩鈦SCR觸媒轉換元素汞及去除NO與Dioxin之效率探討」,碩士論文,國立中央大學環境工程研究所,2015。
黃國華,「以低溫SCR觸媒同時處理2-氯酚及NOx之研究」,碩士論文,國立交通大學環境工程研究所,2011。
劉思妤,「以奈米鈦管及二氧化鈦為擔體製備低溫SCR觸媒處理NOx之SO2毒化影響研究」,碩士論文,國立交通大學環境工程研究所,2013。
劉忠生、方向晨、戴文軍,「煉油廠NOx排放及控制技術」,當代化工,第34卷,2005。
劉勇、吳國忠,「NOx的生成機理」,油氣田地工程,第26卷,2007。
賴正昕、劉國棟、黃自立,「選擇性觸媒還原法排煙脫硝系統(SCR DE-NOx)控制實務」工業污染防治,第57期,1996。
鍾盈絨,「修飾方法對尖晶石負載錳觸媒應用於低溫NH3-SCR之NO去除及SO2之影響」,碩士論文,中臺科技大學環境安全與衛生工程系碩士班,2021。