| 研究生: |
盧業昕 Yeh-Hsin Lu |
|---|---|
| 論文名稱: |
具仿生微奈米結構之壓電靜電混能式自供電感測器與人體生物力學監測裝置 Self-Powered hybrid multifunctional sensor with biomimetic micro/nano-textured structure for human biomechanical monitoring device |
| 指導教授: | 李天錫 |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2020 |
| 畢業學年度: | 108 |
| 語文別: | 英文 |
| 論文頁數: | 70 |
| 中文關鍵詞: | 奈米發電機 、混能式自供電感測器 、機器學習長短期記憶 、仿生表面微結構 |
| 相關次數: | 點閱:11 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文利用壓電材料PZT-5A( lead zirconate titanate piezoelectric ceramics)製成的壓電片和PVDF壓電薄膜作為壓電發電機,分別與靜電奈米發電機( Nanogenerator,NG)結合製成出壓電靜電混能自供電形變感測器(Self-Powered Multifunctional Sensor,SPMS),並進行一系列的訊號量測和應用,其一研究為將壓電陶瓷材料PZT-5A,外部包覆著不鏽鋼外殼的壓電發電執行器與之字形摺紙結構之靜電發電器結合,並在靜電感應器上產生不同的微結構,改良其輸出和電源供應,產生穩定高輸出的混能式感應器,用於醫用輔具感測和智慧輔具研發,將穿著醫用腳部輔具產出的不同訊號做訊號分析以及動作感測,再利用機器學習長短期記憶(Long Short Term Memory,LSTM)演算法來分辨不同的動作以進行數據學習作為動態辨識的指標,其二為採用PVDF壓電薄膜感測器結合具有之靜電發電器製作出發電感應機以用於收集風能的可能性。使用3D列印機製造出一個風管將混能式發電感應器製入其中收集風能,期望能做出壓電靜電混能式風力發電器,以節約能源收集風能產生穩定的些許供電,未來在自供電發電器具中作為可供電式風能發電集能器有很好的發展潛力。
In this paper, piezoelectric device made of piezoelectric material PZT-5A (lead zirconate titanate piezoelectric ceramics) and PVDF (polyvinylidene difluoride) piezoelectric films are used as piezoelectric generators, which are combined with triboelectric Nanogenerators (NG) to produce Self-Powered Multifunctional Sensor (SPMS), with a series of signal measurement and application. One of the research is the piezoelectric ceramic material PZT-5A cover with stainless steel piezoelectric generator. The power generation actuator is combined with the triboelectric nano-generator of the zigzag origami structure, there are different microstructures on the static triboelectric sensor, improving its output and power supply ability, generate a stable and high output hybrid sensor for medical leg aid Measurement. Using different signals produced by wearing medical leg aids for signal analysis and motion sensing, and then using machine learning Long Short Term Memory (LSTM) algorithm to distinguish different actions for data learning as dynamic identification. The second indicator is the possibility of using PVDF piezoelectric film sensor combined with piezoelectric film to make a power generation sensor for collecting wind energy. It is manufactured using a 3D printer produce wind pipe incorporates a hybrid energy generation sensor into it to collect wind energy. It is expected to be used as a self-powered nozzle witch can save wind energy and sensing different wind signal. Collecting wind energy produces give a stable supply of electricity. The sensor has good development potential in the future.
[1] T. C. Hou, Y. Yang, H. Zhang, J. Chen, L. J. Chen, Z. L. Wang. Triboelectric nanogenerator built inside shoe insole for harvesting walking energy. Nano Energy 2211-2855 (2013)
[2] Y. K. Fuh, B. S. Wang, C. Y. Tsai, Self-Powered Pressure Sensor with fully encapsulated 3D printed wavy substrate and highly-aligned piezoelectric fibers array. Scientific Reports 6759 (2017)
[3] F. L. Zhou, R. H. Gong,I. Porat, J. Mater. Homogeneous Field Intensity Control During Multi-Needle Electrospinning via Finite Element Analysis and Simulation. Sci., 2009, 44, 5501
[4] S. Roundy, P. Wright, A piezoelectric vibration based generator
for wireless electronicsSmart Mater. Struct. 13 (2004) 1131–1142
[5] H. Kim, S. Priya, H. Stephanou, K. Uchino, IEEE Trans. Ultrason. Ferroelectr. Freq. Control.,2008, 4, 1851.
[6] S. Priya, Modeling of electric energy harvesting using piezoelectric windmill, Appl. Phys. Lett., 2005,87, 184101.
[7] G. Zhu, R. Yang, S. Wang, Z. L. Wang, Flexible High-Output Nanogenerator Based on Lateral ZnO Nanowire Array, Nano Lett., 2010, 10, 3151.
[8] J. Chen, G. Zhu, J. Yang, Q. Jing, P. Bai, W. Yang, X. Qi, Y. Su, Z. L. Wang, Personalized Keystroke Dynamics for Self-Powered Human–Machine Interfacing, ACS Nano, 2015, 9, 105-116.
[9] X. Pu, H. Guo, J. Chen, X. Wang, Y. Xi, C. Hu, Z. L. Wang, Eye motion triggered self-powered mechnosensational communication system using triboelectric nanogenerator , Sci. Adv., 2017, 3, e1700694.
[10] Y. C. Lai, et al., Single-Thread-Based Wearable and Highly Stretchable Triboelectric Nanogenerators and Their Applications in Cloth-Based Self-Powered Human-Interactive and Biomedical Sensing, Adv. Funct. Mater., 2017, 27, 1, 1604462.
[11] S. W. Chen, et al., An Ultrathin Flexible Single‐Electrode Triboelectric‐Nanogenerator for Mechanical Energy Harvesting and Instantaneous Force Sensing, Adv. Energy Mater., 2017, 7, 1, 1601255.
[12] Zhong Lin Wang, Triboelectric Nanogenerator (TENG)—Sparking an Energy and Sensor Revolution ,Adv. Energy Mater. 2020, 2000137
[13] X. Liang, T. Jiang, G. Liu, Y. Feng, C. Zhang, Z. L. Wang. Spherical triboelectric nanogenerator integrated with power management module for harvesting multidirectional water wave energy. Energy Environ. Sci., 2020, 13, 277—285
[14] Z. L. Wang, T. Jiang, L. Xu. Toward the blue energy dream by triboelectric nanogenerator networks Nano Energy 39 (2017) 9–23
[15] M. Xu, T. Zhao, C. Wang, S. L. Zhang, Z. Li, X. Pan, Z. L. Wang. High Power Density Tower-like Triboelectric Nanogenerator for Harvesting Arbitrary Directional Water Wave Energy. ACS Nano 2019, 13, 2, 1932-1939
[16] G. Liu, H. Guo, S. Xu, C. Hu, Z. L. Wang. Oblate Spheroidal Triboelectric Nanogenerator for All-Weather Blue Energy Harvesting. Adv. Energy Mater. 2019, 1900801
[17] J. An, Z. M.Wang, T. Jiang, X. Liang, Z. L. Wang. Whirling-Folded Triboelectric Nanogenerator with High Average Power for Water Wave Energy Harvesting. Adv. Funct. Mater. 2019, 1904867.
[18] G. Yao, L. Xu, X. Cheng, Y. Li, X. Huang, W. Guo, S. Liu, Z. L. Wang. Bioinspired Triboelectric Nanogenerators as Self-Powered Electronic Skin for Robotic Tactile Sensing. Adv. Funct. Mater. 2019, 1907312
[19] H. Wang, D. Li, W. Zhong, L. Xu, T. Jiang, Z. L. Wang. Self-Powered Inhomogeneous Strain Sensor Enabled Joint Motion and Three-Dimensional Muscle Sensing. ACS Appl. Mater. Interfaces 2019, 11, 37, 34251-34257
[20] Y. Chen, Y. C. Wang, Y. Zhang, H. Zou, Z. Lin, G. Zhang, C. Zou, Z. L. Wang. Elastic-Beam Triboelectric Nanogenerator for HighPerformance Multifunctional Applications: Sensitive Scale, Acceleration/Force/Vibration Sensor, and Intelligent Keyboard. Adv. Energy Mater. 2018, 1802159
[21] F. Gers, N. Schraudolph, and J. Schmidhuber, Learning Precise Timing with LSTM Recurrent Networks. Journal of Machine Learning Research, vol. 3, pp. 115–143, 2002.
[22] P. Molchanov, S. Gupta, K. Kim, J. Kautz, 2015 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), 2015, Page(s): 1 – 7
[23] Y. LeCun, Y. Bengio, G. Hinton, Deep learning. Nature 2015, 521, 436-444.
[24] G. Q. Zhao, G. H. Zhang, Q. Q. Ge, X. Y. Liu, PHM Conf. Research advances in fault diagnosis and prognostic based on deep learning, Chengdu, China, October 2016.
[25] E. Tsironi, P. Barros , S. Wermter , Gesture recognition with a convolutional long short-term memory recurrent neural network, in: Proceedings of the TwentyFourth European Symposium on Artifical Neural Networks, Computational Intelligence and Machine Learning, 2016, pp. 213–218 .
[26] M. Xu, Y. C. Wang, S. L. Zhang, W. Ding, J. Cheng, X. He, P. Zhang, Z. Wang, X. Pan, Z. L. Wang. An aeroelastic flutter based triboelectric nanogenerator as a self-powered active wind speed sensor in harsh environment. Extreme Mechanics Letters 15 (2017) 122–129 (2017)
[27] Y. K. Fuh, Z. M. Huang, B. S. Wang, S. C. Li. Powered Active Sensor with Concentric Topography of Piezoelectric Fibers. Nanoscale Research Letter. 12:44 (2017)
[28] Y. K. Fuh, S. C. Li, C. Y. Chen. Piezoelectrically and triboelectrically hybridized self-powered sensor with applications to smart window and human motion detection. APL MATERIALS 5, 074202 (2017)
[29] Y. K. Fuh, B, S, Wang, C. Y. Tsai, Self-Powered Pressure Sensor with fully encapsulated 3D printed wavy substrate and highly-aligned piezoelectric fibers array, Scientific Report, 6759 (2017)
[30] Y. K. Fuh, S. Ch. Li, Ch. Y. Chen, Ch. Y. Tsai. A fully packaged self-powered sensor based on near-field electrospun arrays of poly (vinylidene fluoride) nano/micro fibers. eXPRESS Polymer Letters Vol.12, No.2 (2018) 136–145
[31] Y.K. Fuh, T. H, Lee, C. Y. Chen, C. Y. Tsai, Near-Field Electrospun Piezoelectric Fibers as Sound-Sensing Elements. Polymers 2018, 10, 692
[32] Y. K.Fuh, C. Y. Chen, C. Y. Tsai, M. H. Xu, C. T. Wu, C. Y. Huang, T, H, Lee. A fully encapsulated piezoelectric–triboelectric hybrid nanogenerator for energy harvesting from biomechanical and environmental sources. eXPRESS Polymer Letters Vol.13, No.6 (2019) 533–542
[33] S. F. Lee, C. Y. Tsai, M. H. Xu, S. W. Wu, W. C. Lo, Y. H. Lu, Y. K. Fuh. Hybrid nano-textured nanogenerator and self-powered sensor for onskin triggered biomechanical motions. Nanotechnology - NANO-122619.R1 (2010)
[34] Jacques Curie, Pierre Curie. Phénomènes électriques des cristaux hémièdres à faces inclines. HAL Submitted on 1 Jan 1882