跳到主要內容

簡易檢索 / 詳目顯示

研究生: 高佳琪
Chia-Chi Kao
論文名稱: 結合深度學習與機器手臂之膠囊咖啡自動辨識與沖泡系統
指導教授: 王文俊
Wen-June Wang
口試委員:
學位類別: 碩士
Master
系所名稱: 資訊電機學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2025
畢業學年度: 113
語文別: 中文
論文頁數: 53
中文關鍵詞: 膠囊咖啡自動沖泡系統影像處理YOLO姿態辨識六軸機械手臂
外文關鍵詞: capsule coffee, automatic brewing system, image processing, YOLO, pose estimation, six-axis robotic arm
相關次數: 點閱:24下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著現代生活節奏日益加快,咖啡成為許多人在繁忙早晨中的必備飲品。膠囊咖啡機因操作便利、口味多樣而廣受歡迎,然而,目前市面上的自動化咖啡系統多專注於義式咖啡沖泡流程,鮮少針對膠囊咖啡進行完整的自動辨識與操作整合。因此,本論文旨在設計並實作一套結合影像處理與機械手臂控制技術的膠囊咖啡自動沖泡系統,實現從使用者介面操作到實際沖泡完成的全流程自動化,提升日常使用的便利性與操作效率。
    本系統包含四大模組:使用者介面、膠囊種類辨識模組、膠囊姿態分析模組,以及六軸機械手臂控制模組。使用者可透過網頁選擇欲沖泡的咖啡膠囊種類,系統即透過攝影機擷取收納盤影像,並以物件偵測演算法辨識膠囊的種類與位置。針對選定目標膠囊,系統進一步進行裁切與影像處理,包含灰階轉換、雙邊濾波與邊緣檢測,藉此分析膠囊在盤中的擺放姿態,再轉換為夾爪所需之操作角度與位置。
    為因應膠囊擁擠而無法直接夾取的情形,系統依據邊界框間距分級判斷環境條件,並選擇適當策略,如直接夾取、靠近後微幅推開鄰近膠囊,或使用推桿推開周圍膠囊,為目標膠囊創造足夠夾取空間。系統可實現全流程自動化作業,操作過程無須人工介入。系統另設計簡易操作的網頁介面,除提供膠囊選擇外,亦支援自然語言輸入需求,能根據輸入偏好推薦適當膠囊種類,提升互動體驗。
    實驗部分評估系統辨識與操作效能。物件偵測模型在測試資料上達成99.5%準確率與99.8%召回率;姿態分析準確率達97.6%;自動沖泡流程共進行80次操作,成功完成73次,整體成功率為91.25%。系統具穩定性與可用性,具應用於家庭使用或自助設備等場域之潛力,未來亦可進一步導入深度攝影、固定光源與自動調整策略,以提升整體效能與適應力。


    As modern lifestyles become increasingly fast-paced, coffee has become an essential beverage during busy mornings. Capsule coffee machines are popular due to their convenience and variety of flavors. However, most automated coffee systems focus on espresso brewing, with few providing comprehensive recognition and operation for capsule coffee. This thesis designs and implements an automated capsule coffee brewing system integrating image processing and robotic arm control, achieving full automation from user interface to brewing completion, enhancing daily convenience and efficiency.
    The system includes four modules: user interface, capsule type recognition, capsule posture analysis, and six-axis robotic arm control. Users select capsules via a web interface. The system captures images of the capsule tray and uses object detection to identify capsule types and locations. For the selected capsule, image cropping and processing—grayscale conversion, bilateral filtering, and edge detection—analyze its posture, which is converted into gripping angles and positions for the robot.
    To handle crowded capsules, the system classifies environmental conditions based on bounding box spacing and applies strategies such as direct grasping, slight pushing of neighbors, or using a pusher tool to create space. Fully automated operation requires no manual intervention. The user-friendly web interface supports capsule selection and natural language input for personalized recommendations.
    Experiments show the object detection model achieves 99.5% precision and 99.8% recall; posture analysis accuracy reaches 97.6%; and 73 successes out of 80 automated brewing attempts yield a 91.25% success rate. The system is stable and usable, with potential for home or self-service applications. Future work may incorporate depth cameras, fixed lighting, and automatic adjustments to improve performance and adaptability.

    摘要 i Abstract ii 致謝 iii 目錄 iv 圖目錄 vi 表目錄 viii 第一章 緒論 1 1.1 研究背景與動機 1 1.2 文獻回顧 1 1.3 論文目標 3 1.4 論文架構 4 第二章 系統架構與軟硬體介紹 5 2.1 系統架構 5 2.2 硬體裝置 6 2.2.1 筆記型電腦 6 2.2.2 攝影機 6 2.2.3 六軸機械手臂 8 2.2.4 夾爪裝置 9 2.2.5 膠囊咖啡機 11 2.2.6 咖啡膠囊收納盤 11 2.2.7 推桿 12 2.3 系統通訊 13 第三章 咖啡膠囊辨識與姿態分析演算法 14 3.1 咖啡膠囊種類辨識 14 3.1.1 訓練資料集 14 3.1.2 YOLOv8模型訓練 15 3.2 咖啡膠囊姿態分析 16 3.2.1 影像預處理 17 3.2.2 圓形檢測 18 3.2.3 邊緣檢測 19 3.2.4 形狀辨識 20 3.2.5 夾爪姿態 22 3.3 座標轉換與機械手臂控制 23 第四章 網頁應用程式的設計與功能 25 4.1 系統介面與操作流程 25 4.2 自選咖啡模式 (I Know My Flavor) 26 4.3 AI咖啡推薦系統 (I Need a Recommendation) 27 第五章 機械手臂的控制流程 30 5.1 控制邏輯與任務流程 30 5.2 杯子夾取流程 31 5.3 擁擠判斷與策略選擇 33 第六章 實驗結果 35 6.1 膠囊種類辨識準確度 35 6.2 膠囊姿態辨識準確率分析 36 6.3 系統操作流程成功率驗證 36 第七章 結論與未來展望 38 7.1 結論 38 7.2 未來展望 38 參考文獻 39

    [1] International Coffee Organization, "Coffee Market Report – March 2025," Available: https://www.ico.org/documents/cy2024-25/cmr-0325-e.pdf
    [2] Technavio. "Coffee Pods And Capsules Market Analysis Europe, North America, APAC, Middle East and Africa, South America - US, France, Germany, Italy, Canada, UK, China, Japan, India, Brazil - Size and Forecast 2025-2029." Technavio. https://www.technavio.com/report/coffee-pods-and-capsules-market-analysis.
    [3] Deeksha, T. Meenpal, M. S. Khan, and M. Sahu, "Automatic Food Billing System of Indian Food using YOLOv8 model," in 2024 15th International Conference on Computing Communication and Networking Technologies (ICCCNT), 2024, pp. 1–6.
    [4] Y. Xu and D. Yang, " Research and Design of Intelligent Food Delivery Robot on Campus Under Epidemic Situation," in 2023 Asia Conference on Advanced Robotics, Automation, and Control Engineering (ARACE), 2023, pp. 123–127.
    [5] A. Turcanu and I. Nuca, " Implementation of the Automaticaly Adjustable Tamping Process in the Automated Coffee Brewing," in 2016 International Conference on Applied and Theoretical Electricity (ICATE), 2016, pp. 1–6.
    [6] E. Hadianto, D. Amanda, D. Hindarto, A. Makmur, and H. Santoso, "Design and Development of Coffee Machine Control System Using Fuzzy Logic," Sinkron, vol. 8, pp. 130–138, 2023.
    [7] F. T. Boro, I. Riyanto, and K. Adiyarta, " Automatic Coffee Grinding and Brewing Process With NUC140 Microcontroller," in 2017 3rd International Conference on Science in Information Technology (ICSITech), 2017, pp. 537–540.
    [8] V. S. Arumilli, A. K. Ghatta, and R. K. Megalingam, "FPGA – Controlled Automated Coffee Maker using Verilog," in 2024 Third International Conference on Electrical, Electronics, Information and Communication Technologies (ICEEICT), 2024, pp. 1–7.
    [9] W. Ari, T. Asni, and H. Sri Rahandika, "Robot Arm Design for Coffee Maker Arduino Based," in Proceedings of the 2nd Borobudur International Symposium on Science and Technology (BIS-STE 2020), 2021/08/11 2021: Atlantis Press, pp. 438–442. [Online]. Available: https://doi.org/10.2991/aer.k.210810.076
    [10] S. Michalková, K. Wojnarowský, Š. Kolenyák, M. Kantor and J. Arm, "Automating the Handling Process of a Coffee Machine Using a Robotic Manipulator," 2024 XV International Symposium on Industrial Electronics and Applications (INDEL), Banja Luka, Bosnia and Herzegovina, 2024, pp. 1-5.
    [11] 蔡傑凱, "基於機械手臂之咖啡拉花案例研究," 碩士, 資訊工程研究所, 國立中正大學, 嘉義縣, 2018. [Online]. Available: https://hdl.handle.net/11296/66p238
    [12] 陳廷宇, "多軸機器手臂咖啡機器人設計與實現," 碩士, 電機工程學系-半導體製造智能化技術產業碩士專班, 國立高雄大學, 高雄市, 2024. [Online]. Available: https://hdl.handle.net/11296/t74xmq
    [13] 李林, "商用胶囊咖啡机控制系统的设计及实现," 硕士, 广东工业大学, 2015.
    [14] M. Agarwal, K. S. Gill, M. Kumar, R. Rawat, and K. R. Chythanya, "Image Classification of Nespresso Capsules by the Use of Convolutional Neural Networks Through Deep Learning," in 2024 2nd International Conference on Computer, Communication and Control (IC4), 2024, pp. 1–6.
    [15] Y. Yu, K. Zhang, H. Liu, L. Yang, and D. Zhang, "Real-Time Visual Localization of the Picking Points for a Ridge-Planting Strawberry Harvesting Robot," IEEE Access, vol. 8, pp. 116556–116568, 2020.
    [16] S. Zhang, Z. Guo, J. Huang, W. Ren, and L. Xia, "Robotic Grasping Position of Irregular Object Based Yolo Algorithm," in 2020 5th International Conference on Automation, Control and Robotics Engineering (CACRE), 2020, pp. 642–646.
    [17] R. Varghese and S. M., "YOLOv8: A Novel Object Detection Algorithm with Enhanced Performance and Robustness," in 2024 International Conference on Advances in Data Engineering and Intelligent Computing Systems (ADICS), 2024, pp. 1–6.
    [18] Z. Zhao et al., "Recommender Systems in the Era of Large Language Models (LLMs)," IEEE Transactions on Knowledge and Data Engineering, vol. 36, no. 11, pp. 6889–6907, 2024.
    [19] B. Zheng et al., "Adapting Large Language Models by Integrating Collaborative Semantics for Recommendation," in 2024 IEEE 40th International Conference on Data Engineering (ICDE), 2024, pp. 1435–1448.
    [20] G. H. Lim, S. W. Hong, I. Lee, I. H. Suh, and M. Beetz, " Robot Recommender System Using Affection-Based Episode Ontology for Personalization," in 2013 IEEE RO-MAN , pp. 155–160.
    [21] P. P. Ray, " ChatGPT: A Comprehensive Review on Background, Applications, Key Challenges, Bias, Ethics, Limitations, and Future Scope," Internet of Things and Cyber-Physical Systems, vol. 3, pp. 121–154, 2023.
    [22] Gemini Team, “Gemini: A Family of Highly Capable Multimodal Models,” arXiv preprint arXiv:2312.11805, Dec. 2023.
    [23] UFACTORY. "UFACTORY Lite 6 开发者手册." https://www.cn.ufactory.cc/_files/ugd/896670_411642a7d18b4767b6aa8c3df0eafe0e.pdf.
    [24] xArm Developer. "xArm-Python-SDK." https://github.com/xArm-Developer/xArm-Python-SDK (accessed 5/29, 2025).
    [25] Ultralytics. "Explore Ultralytics YOLOv8." https://docs.ultralytics.com/zh/models/yolov8/.
    [26] "LabelImg." https://github.com/HumanSignal/labelImg.
    [27] T.-Y. Lin et al., "Microsoft COCO: Common Objects in Context," CoRR, vol. abs/1405. 2014.
    [28] C. Tomasi and R. Manduchi, "Bilateral filtering for gray and color images," in Sixth International Conference on Computer Vision (IEEE Cat. No.98CH36271), 1998, pp. 839–846.
    [29] D. Marr and E. Hildreth, "Theory of edge detection," Proceedings of the Royal Society of London. Series B. Biological Sciences, vol. 207, no. 1167, pp. 187–217, 1980.
    [30] S. Paris, P. Kornprobst, J. Tumblin, and F. Durand, "Bilateral filtering: Theory and applications," Foundations and Trends® in Computer Graphics and Vision, vol. 4, no. 1, pp. 1–73, 2009.
    [31] R. O. Duda and P. E. Hart, "Use of the Hough transformation to detect lines and curves in pictures," Commun. ACM, vol. 15, no. 1, pp. 11–15, 1972.
    [32] J. Canny, "A Computational Approach to Edge Detection," IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. PAMI-8, no. 6, pp. 679–698, 1986.
    [33] P. V. C. Hough, “Method and Means for Recognizing Complex Patterns,” U.S. Patent 3,069,654, Dec. 18, 1962.

    QR CODE
    :::