跳到主要內容

簡易檢索 / 詳目顯示

研究生: 潘勤華
Cin-Hua Pan
論文名稱: Overdamped Brownian dynamics in Inhomogeneous Temperature Field: Effective Potential, Transition Rate, Landauer Limit, and Gyration in two-dimensions
指導教授: 黎璧賢
Pik-Yin Lai
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2025
畢業學年度: 113
語文別: 英文
論文頁數: 94
中文關鍵詞: 非平衡態熱力學躍遷速率蘭道爾極限布朗迴轉器布朗運動有效位能
外文關鍵詞: Non-equilibrium thermodynamics, Transition rate, Landauer limit, Brownian gyrator, Brownian motion, Effective potential
相關次數: 點閱:88下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 我們透過解析法和朗之萬動力學模擬研究了非均勻溫度場中的過阻尼布朗動力學。在一維系統中,單軸溫度分佈和單勢阱陷阱可以產生單峰或雙峰穩態分佈,這些分佈可以用有效位勢來表徵。當有效勢具有雙勢阱結構時,我們推導出躍遷速率的一般近似公式。結果表明,躍遷速率越過有效勢壘遵循通常的 Kramers 指數行為。我們也考慮了雙勢阱的情況,所有理論和近似公式與數值模擬結果一致。

    另一個主題是非均勻溫度場下的蘭道爾極限。這是一個具有時間相關勢的一維非平衡系統。我們的目標是找出與蘭道爾極限相關的有效溫度𝑇̃,即𝑘𝐵𝑇̃ln 2。結果表明,𝑇̃ 可能無法表示為空間溫度分佈的簡單加權平均值。在某些情況下,𝑇̃ 可能會超出整個溫度範圍。這種偏差可能源自於熱流沿溫度梯度所引起的耗散。我們進一步推廣了蘭道爾極限,應用 Jarzynski 恆等式,並以有效位勢來表徵系統。

    在二維系統中,我們研究了粒子通量場的空間行為。特別地,我們給出了無粒子通量的條件以及粒子通量旋度消失的位置。此外,我們推導出了高維零通量條件下有效勢的顯式表達式。研究發現,單個非均勻溫度場可以誘導布朗粒子發生平均旋轉運動,這是由於通量場中兩對渦旋強度的不對稱所造成的,較強的渦旋決定了平均粒子旋轉的主導方向。與雙溫度系統的布朗旋轉子不同,我們提出了一種更簡單的方法來實現布朗粒子的轉動,即使轉動速率低於雙溫度系統。


    We study overdamped Brownian dynamics in non-uniform temperature fields analytically and by Langevin dynamics simulations. In a one-dimensional system, a uniaxial temperature profile and a single-well trap can give rise to either unimodal or bimodal steady-state distributions, which can be characterized by an effective potential. We derive the general approximate formulas for the transition rate when the effective potential possesses a double-well structure. The results show that the transition rate over the effective barrier follows the usual Kramers' exponential behavior. We also consider the double-well potential case, and all theoretical and approximate formulas are consistent with numerical simulations.

    Another topic is the Landauer limit under a non-uniform temperature field. This is a one-dimensional non-equilibrium system with a time-dependent potential. We aim to find the effective temperature $\tilde{T}$ associated with the Landauer limit, which is $k_B\tilde{T}\ln 2$. The results show that $\tilde{T}$ may not be expressed as a simple weighted average of the spatial temperature profile. In some situations, $\tilde{T}$ can exceed the entire temperature range. This deviation arises from the dissipation induced by heat flow across the temperature gradient. We further generalized the Landauer limit by applying the Jarzynski equality to characterize the system using an effective potential.

    In a two-dimensional system, we studied the spatial behavior of the particle flux field. In particular, we give the conditions that there is no particle flux and the locations where the curl of the particle flux vanishes. In addition, we derived an explicit expression for the effective potential under the zero-flux condition in higher dimensions. It is found that a non-uniform temperature field can induce a mean rotational motion for the Brownian particle, which is caused by the asymmetry in the strength of two vortex pairs in the flux field, and the stronger vortex pair determines the dominant direction of mean particle rotation. Different from the Brownian rotator of the two-temperature system, we propose a simpler method to realize the Brownian particle rotation even if the rotation rate is lower than the two-temperature system.

    1 Introduction ... 1 2 Overdamped Langevin Equation Model with Multiplicative Noise ... 5 2.1 Overview of the Langevin Equation in Uniform Temperature Field ... 5 2.2 From the Einstein Relation Under a Non-uniform Temperature Field Deduces the Fokker-Planck Equation and the Langevin Equation ... 6 2.3 Stochastic Calculus Approach ... 10 2.4 Multiplicative Noise Models and Unit of Numerical Simulation ... 12 2.5 Entropy and Information in Stochastic Process ... 13 3 One-Dimensional System in Inhomogeneous Temperature Field ... 15 3.1 Non-Boltzmann Distribution under Harmonic Potential ... 15 3.2 Transition Rate (K) in Non-Uniform Temperature Field ... 18 3.3 Generalization of Transition rate for y-axis symmetric single-well U(x) and a unimodal T(x) ... 23 3.3.1 An example: Single-well potential and Gaussian temperature field ... 25 3.3.2 Another example: Transition rate correction for the double well potential ... 31 3.4 Diffusion field reconstruction using steady-state position and diffusion constant distributions ... 35 3.4.1 An Example: Symmetrical diffusion field with a single peak ... 36 4 Landauer Limit under a Non-uniform Temperature Field ... 39 5 Two-dimensional autonomous Brownian gyrator ... 48 5.1 The most general two-dimensional system ... 48 5.2 T12 = T21 = 0 but T11 and T22 ̸= 0 ... 49 5.2.1 The case of T11(x1, x2) = T22(x1, x2) = T(x1, x2) ... 50 6 Conclusion and Outlook ... 68 A Some Derivations ... 71 A.1 Overview of the Stochastic Wiener Process ... 71 A.2 Derivation of the Itˆo Lemma ... 72 A.3 Derivation of the Mean First Passage Time ... 72 A.4 Table of Integrals ... 73 Bibliography ... 74

    [1] John AC Albay, Zhi-Yi Zhou, Chia-Hao Chang, Hsuan-Yi Chen, Jae Sung Lee, Cheng-Hung Chang, and Yonggun Jun. Colloidal heat engine driven by engineered active noise. Physical Review Research, 5(3):033208, 2023.

    [2] Ronald Benjamin and Ryoichi Kawai. Inertial effects in büttiker-landauer motor and refrigerator at the overdamped limit. Physical Review E—Statistical, Nonlinear, and Soft Matter Physics, 77(5):051132, 2008.

    [3] Charles H Bennett. Notes on Landauer’s principle, reversible computation, and Maxwell’s demon. Studies In History and Philosophy of Science Part B: Studies In History and Philosophy of Modern Physics, 34(3):501–510, 2003.

    [4] Antonio Celani, Stefano Bo, Ralf Eichhorn, and Erik Aurell. Anomalous thermodynamics at the microscale. Physical Review Letters, 109(26):260603, 2012.

    [5] Chia-Hao Chang, Chia-Jung Chang, Nian-Jhu Wu, Yonggun Jun, and Cheng-Hung Chang. Stochastic heat engines beyond a unique definition of temperature. Physical Review Research, 5(4):043085, 2023.

    [6] Hsin Chang, Chi-Lun Lee, Pik-Yin Lai, and Yung-Fu Chen. Autonomous Brownian gyrators: A study on gyrating characteristics. Physical Review E, 103(2):022128, 2021.

    [7] K-H Chiang, C-L Lee, P-Y Lai, and Y-F Chen. Electrical autonomous Brownian gyrator. Physical Review E, 96(3):032123, 2017.

    [8] Raoul Dillenschneider and Eric Lutz. Memory erasure in small systems. Physical Review Letters, 102(21):210601, 2009.

    [9] DMGualtieri. Feynman-smoluchowski ratchet, 26 October, 2018.

    [10] Albert Einstein. Über die von der molekularkinetischen theorie der wärme geforderte bewegung von in ruhenden flüssigkeiten suspendierten teilchen. Annalen der physik, 4, 1905.

    [11] Roger Filliger and Peter Reimann. Brownian gyrator: A minimal heat engine on the nanoscale. Physical Review Letters, 99(23):230602, 2007.

    [12] Ian J Ford and Robert W Eyre. Work relations for a system governed by tsallis statistics. Physical Review E, 92(2):022143, 2015.

    [13] Anna Frishman and Pierre Ronceray. Learning force fields from stochastic trajectories. Physical Review X, 10(2):021009, 2020.

    [14] Peter Hänggi, Peter Talkner, and Michal Borkovec. Reaction-rate theory: fifty years after Kramers. Reviews of modern physics, 62(2):251, 1990.

    [15] James T Hynes. Chemical reaction rates and solvent friction. Journal of Statistical Physics, 42: 149-168, 1986.

    [16] Yonggun Jun, Momčilo Gavrilov, and John Bechhoefer. High-precision test of Landauer’s principle in a feedback trap. Physical Review Letters, 113(19):190601, 2014.

    [17] Marc TM Koper and Wolfgang Schmickler. A Kramers reaction rate theory for electrochemical ion transfer reactions. Chemical physics, 211(1-3):123–133, 1996.

    [18] Chulan Kwon, Ping Ao, and David J Thouless. Structure of stochastic dynamics near fixed points. Proceedings of the National Academy of Sciences, 102(37):13029–13033, 2005.

    [19] Rolf Landauer. Motion out of noisy states. Journal of statistical physics, 53: 233-248, 1988.

    [20] Wenqi Lin, Yi-Hung Liao, Pik-Yin Lai, Yonggun Jun, et al. Stochastic currents and efficiency in an autonomous heat engine. Physical Review E, 106(2): L022106, 2022.

    [21] Ignacio A Martínez, Édgar Roldán, Luis Dinis, Dmitri Petrov, Juan MR Parrondo, and Raúl A Rica. Brownian carnot engine. Nature Physics, 12(1):67–70, 2016.

    [22] Miki Matsuo and Shin-ichi Sasa. Stochastic energetics of non-uniform temperature systems. Physica A: Statistical Mechanics and its Applications, 276(1-2): 188–200, 2000.

    [23] Goran Peskir. On the diffusion coefficient: The Einstein relation and beyond. 2003.

    [24] Barbara Piechocinska. Information erasure. Physical Review A, 61(6):062314, 2000.

    [25] Karel Proesmans, Jannik Ehrich, and John Bechhoefer. Finite-time Landauer principle. Physical Review Letters, 125(10):100602, 2020.

    [26] RK Pathria RK. Statistical mechanics, 1996.

    [27] Ken Sekimoto. Stochastic energetics, 2010.

    [28] Yusheng Shen, Chengjie Luo, Yan Wen, Wei He, Pingbo Huang, Hsuan-Yi Chen, Pik-Yin Lai, and Penger Tong. Directed motion of membrane proteins under an entropy-driven potential field generated by anchored proteins. Phys. Rev. Res., 3: 043195, Dec 2021.

    [29] Naoto Shiraishi. An Introduction to Stochastic Thermodynamics: From Basic to Advanced, volume 212. Springer Nature, 2023.

    [30] Charles Soret. Sur l’etat d’équilibre que prend au point de vue de sa concentration une dissolution saline primitivement homogène dont deux parties sont portées a des températures difféntes. Arch Sci Phys Nat, 2:48, 1879.

    [31] Yan Wen, Zhihao Li, Haiqin Wang, Jing Zheng, Jinyao Tang, Pik-Yin Lai, Xin-peng Xu, and Penger Tong. Activity-assisted barrier crossing of self-propelled colloids over parallel microgrooves. Physical Review E, 107(3): L032601, 2023.

    [32] Huan-Xiang Zhou. Rate theories for biologists. Quarterly reviews of biophysics, 43(2):219–293, 2010.

    QR CODE
    :::