| 研究生: |
莊惠婷 Huei-ting Jhuang |
|---|---|
| 論文名稱: |
製備金奈米粒子/多壁奈米碳管修飾玻璃碳電極汞(Ⅱ)之循環伏安法分析 Determination of mercury(Ⅱ) using gold nanoparticles/ multi-walled carbon nanotubes composite modified glassy carbon electrode via cyclic voltammetry |
| 指導教授: |
秦靜如
Ching-Ju Chin |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 環境工程研究所 Graduate Institute of Environmental Engineering |
| 論文出版年: | 2015 |
| 畢業學年度: | 103 |
| 語文別: | 中文 |
| 論文頁數: | 109 |
| 中文關鍵詞: | 金奈米顆粒 、物種分布 、化學還原法 |
| 外文關鍵詞: | gold nanoparticles, mercury speciation, chemical reduction |
| 相關次數: | 點閱:8 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究運用化學還原法製備金奈米粒子/多壁奈米碳管複合材料修飾玻璃碳電極進行汞(Ⅱ)之循環伏安法分析,藉由調整汞(Ⅱ)溶液在不同pH條件及添加氯離子使汞(Ⅱ)主要物種分布改變下,瞭解修飾電極對汞(Ⅱ)主要物種改變之伏安法影響,最後瞭解修飾電極偵測水中不同濃度汞(Ⅱ)之還原電流值與濃度的相關性。由TEM、XRD、UV及EDS分析結果顯示利用化學還原法可有效製備金奈米粒子且與多壁奈米碳管複合狀況良好,而由電化學實驗可知修飾電極的反應面積皆大於玻璃碳電極,因此可得較大的偵測電流訊號值。當pH調整時,三種修飾電極皆會因汞(Ⅱ)主要物種分布改變而還原電位改變,但當氯離子添加時,僅10-GNP/MWCNTs修飾電極的偵測還原電位會偏移,最後修飾電極偵測不同濃度汞(Ⅱ)時,修飾電極的還原電流訊號值與汞(Ⅱ)濃度間(1 ppb ~ 10 ppb)的相關係數(R2)均有0.9以上是可信的線性關係,表示利用修飾電極伏安法分析汞(Ⅱ)是具有選擇性且可行的方法。
The objective of this work was to prepare gold nanoparticles (GNP)/ multi-walled carbon nanotubes (MWCNTs) composite to modified glassy carbon electrode (GCE), which was used to analyze Hg (Ⅱ) by cyclic voltammetry (CV). It was found that modification via GNP/MWCNTs composite increased the active area. In order to investigate the influences of speciation on the reduction peak currents, CV was conducted at different solution pH and with addition of NaCl. When the solution pH was adjusted, the shift of the reduction peak of Hg was measured by all three modified electrodes. When NaCl was added, only the GCE electrode modified by 10-GNP/MWCNTs measured the shift of the reduction peak of Hg. These indicated that the CV by GNP/MWCNTs modified GCE electrodes can monitored the changes in speciation. Linear response between the reduction peak current and Hg concentration ranged from 1 ppb to 10 ppb has been found in all three modified electrodes This suggested that using GNP/MWCNTs modified GCE electrodes to analyze Hg concentration via cyclic voltammetry may be feasible.
Alloway, B. J., "Heavy metals in soils", Springer, (1990).
Balasubramanian, K., and Burghard, M., "Electrochemically functionalized carbon nanotubes for device applications", Materials Chemistry, 18, 3071-3083 (2008).
Bard, A. J., and Faulkner, L. R., "Electrochemical methods fundamental and application", John Wiley and Sons Canada 2nd ed, (2001).
Barringer, J. L., Szabo, Z., and Reilly, P. A., "Occurrence and mobility of mercury in groundwater", Intech, (2013).
Bodek, I., Lyman, W. J., Reehl, W. F., and Rosenblatt, D. H., "Environmental inorganic chemistry: properties, processes, and estimation methods", Pergamon Press, (1988).
Buica, G. O., Bucher, C., Moutet, J.-C., Royal, G., Saint-Aman, E., and Ungureanu, E. M., "Voltammetric sensing of mercury and copper cations at poly(EDTA-like) film modified electrode", Electroanalysis, 21, 77-86 (2009).
Chin, C.-J. M., Shih, L.-C., Tsai, H.-J., and Liu, T.-K., "Adsorption of o-xylene and p-xylene from water by SWCNTs", Carbon, 45, 1254-1260 (2007).
Driscoll, C. T., Mason, R. P., Chan, H. M., Jacob, D. J., and Pirrone, N., "Mercury as a global pollutant :sources, pathway, and effects", Environmental Science and Technology, 47, 4967-4983 (2013).
Fergusson, J. E., "The heavy elements: chemistry, environmental impact and health effects", Pergamon Press, (1990).
Gabriel, M. C., and Williamson, D. G., "Principal biogeochemical factors affecting the speciation and transport of mercury through the terrestrial environment", Environmental Geochemistry and Health, 26, 421-434 (2004).
Ghadimi, H., Tehrani, R. M., Ali, A. S., Mohamed, N., and Ghani, S. A., "Sensitive voltammetric determination of paracetamol by poly (4-vinylpyridine)/multiwalled carbon nanotubes modified glassy carbon electrode", Analtica Chimica Acta, 765, 70-76 (2013).
Giacomino, A., Abollino, O., Malandrino, M., and Mentasti, E., "Parameters affecting the determination of mercury by anodic stripping voltammetry using a gold electrode", Talanta, 75, 266-273 (2008).
Gu, B., Bian, Y., Miller, C. L., Dong, W., Jiang, X., and Liang, L., "Mercury reduction and complexation by natural organic matter in anoxic environments", Proceedings of the National Academy of Sciences, 108, 1479-1483 (2011).
Guo, Y., Guo, S., Fang, Y., and Dong, S., "Gold nanoparticle/carbon nanotube hybrids as an enhanced material for sensitive amperometric determination of tryptophan", Electrochimica Acta, 55, 3927-3931 (2010).
Harada, M., "Minimata disease: Methylmercury poisoning in Japan caused by Environmental pollution", Critical Reviews in Toxicology, 25, 1-24 (1995).
Hatch, W. R., and Ott, W. L., "Determination of sub-microgram quantities of mercury by atomic absorption spectrophotometry", Analyical Chemistry, 40, 2085-2087 (1968).
Heras, A., Colina, A., López-Palacios, J., Ayala, P., Sainio, J., Ruiz, V., and Kauppinen, E. I., "Electrochemical purification of carbon nanotube electrodes", Electrochemistry Communications, 11, 1535-1538 (2009).
Hrapovic, S., Liu, Y., Male, K. B., and Luong, J. H. T., "Electrochemical biosensing platforms using platinum nanoparticles and carbon nanotubes", Analytical Chemistry, 76, 1083-1088 (2004).
Kim, J., Rabbani, M. M., Kim, D., Ree, M., Yeum, J. H., Ko, C. H., Kim, Y., Bae, J.-S., and Oh, W., "Structural and electrochemical properties of gold-deposited carbon nanotube composites", Current Applied Physics, 10, S201-S205 (2010).
Kruusenberg, I., Alexeyeva, N., Tammeveski, K., Kozlova, J., Matisen, L., Sammelselg, V., Solla-Gullón, J., and Feliu, J. M., "Effect of purification of carbon nanotubes on their electrocatalytic properties for oxygen reduction in acid solution", Carbon, 49, 4031-4039 (2011).
Male, K. B., Hrapovic, S., Liu, Y., Wang, D., and Luong, J. H. T., "Electrochemical detection of carbohydrates using copper nanoparticles and carbon nanotubes", Analytica Chimica Acta, 516, 35-41 (2004).
Martin-Yerga, D., Gonzalez-Garcia, M. B., and Costa-Garcia, A., "Electrochemical determination of mercury: a review", Talanta, 116, 1091-104 (2013).
McCreery, R. L., "Advanced carbon electrode materials for molecular electrochemistry", Chemical Reviews, 108, 2646-2687 (2008).
Morita, H., Sugimo, M., and Shimomura, S., "Selective determination of inorganic and total mercury by cold vapor atomic fluorescence spectrometry coupled with flow injection analysis", Analyical Sciences February, 6, 91-95 (1990).
Mousty, C., "Sensors and biosensors based on clay-modified electrodes?new trends", Applied Clay Science, 27, 159-177 (2004).
Rabbani, M. M., Ko, C. H., Bae, J.-S., Yeum, J. H., Kim, I. S., and Oh, W., "Comparison of some gold/carbon nanotube composites prepared by control of electrostatic interaction", Colloids and Surfaces A: Physicochemical and Engineering Aspects, 336, 183-186 (2009).
Salinas-Torres, D., Huerta, F., Montilla, F., and Morallón, E., "Study on electroactive and electrocatalytic surfaces of single walled carbon nanotube-modified electrodes", Electrochimica Acta, 56, 2464-2470 (2011).
Schlüter, K., "Review: evaporation of mercury from soils. An integration and
synthesis of current knowledge", Environmental Geology, 39, 249-271 (2000).
Silva, F. A. S., Silva, M. G., Lima , P. R. L., Meneghetti , M. R., Kubota, L. T., and Goulart, M. O. F., "A very low potential electrochemical detection of L-cysteine based on a glassy carbon electrode modified with multi-walled carbon nanotubes/gold nanorods", Biosens Bioelectron, 50, 202-209 (2013).
Sun, D., Xie, X., Cai, Y., Zhang, H., and Wu, K., "Voltammetric determination of Cd2+ based on the bifunctionality of single-walled carbon nanotubes-Nafion film", Analtica Chimica Acta, 581, 27-31 (2007).
Turyan, I., Atiya, M., and Mandler, D., "Comparing different approaches for assembling selective electrodes for heavy metals", Electroanalysis, 13, 653-659 (2001).
UNEP, "Global mercury assessment", (2002).
USEPA, "Health services industry detailed study-dental amalgam", (2008).
Wang, J., "Analytical Electrochemistry", Wiley, (2006).
Wang, S., Jiang, S. P., and Wang, X., "Polyelectrolyte functionalized carbon nanotubes as a support for noble metal electrocatalysts and their activity for methanol oxidation", Nanotechnology, 19, 265601 (2008).
Wang, Y., Du, G., Zhu, L., Liu, H., Wong, C.-P., and Wang, J., "Aligned open-ended carbon nanotube membranes for direct electrochemistry applications", Sensors and Actuators B: Chemical, 174, 570-576 (2012).
Wei, J., Yang, D., Chen, H., Gao, Y., and Li, H., "Stripping voltammetric determination of mercury(II) based on SWCNT-PhSH modified gold electrode", Sensors and Actuators B: Chemical, 190, 968-974 (2014).
Wu, F.-H., Zhao, G.-C., and Wei, X.-W., "Electrocatalytic oxidation of nitric oxide at multi-walled carbon nanotubes modified electrode", Electrochemistry Communications, 4, 690-694 (2002).
Wu, K., Hu, S., Fei, J., and Bai, W., "Mercury-free simultaneous determination of cadmium and lead at a glassy carbon electrode modified with multi-wall carbon nanotubes", Analytica Chimica Acta, 489, 215-221 (2003).
Yao, Y. L., and Shiu, K. K., "Direct electrochemistry of glucose oxidase at carbon nanotube‐gold colloid modified electrode with poly(diallyldimethylammonium chloride) coating", Electroanalysis, 20, 1542-1548 (2008).
Yuan, S., He, Q., Yao, S., and Hu, S., "Mercury‐free detection of europium (III) at a glassy carbon electrode modified with carbon nanotubes by adsorptive stripping voltammetry", Analytical Letters, 39, 373-385 (2006).
王鳳英, "界面活性劑的原理與應用", 高立圖書有限公司 (1996).
行政院環境保護署環境檢驗所, "水中汞檢測法-冷蒸氣原子吸收光譜法", (2006).
行政院環境保護署環境檢驗所, "水中汞檢測法-冷蒸氣原子螢光光譜法", (2008).
宋德高, 劉沛宏, 張以燦, 陸瑩, 許益源, 曾素媛, 吳芳娥, 馮金源, 陳秀敏, 吳堉鑾, 杜盛清, 許麗娟, 鍾麗娟, 與張俊鴻, "非法棄置事業廢棄物場址危害評估", TASGEP Newsletter 3, 3-6 (2002).
李佳樺, "東亞大氣汞之長程輸送研究: 雲水中汞之定量分析與指紋之建立", 國立中央大學化學研究所 (2004).
李映瑩,蔡宗霖, 和謝達斌 "金奈米粒子於生物醫學上的應用", 化學專題回顧第六十八卷第一期, 11-12 (2010).
阮國棟, "汞之污染特性及處理技術", 工業污染防治 第四卷 第三期, 161-186 (1985).
胡啟章, "電化學原理與方法", 五南圖書出版社 (2011).
綠色陣線協會, "我們做的事-台鹼安順廠",
歐陽姍佩, "鹼性溶液中鎳大環錯鹽聚合膜修飾電極對甲醇及苯甲醇之氧化電觸媒行為研究", 國立台南師範學院自然科學教育學系 (2004).
鄭人豪, "白金奈米顆粒修飾玻璃碳電極及其應用於葡萄糖生醫感測器之研究", 南台科技大學化學工程研究所 (2004).