| 研究生: |
蕭遙 Yao Hsiao |
|---|---|
| 論文名稱: | A Comparative Study of Bursty T Tauri Stars in ρ Ophiuchus, Taurus, and Upper Scorpius |
| 指導教授: |
葉永烜
Wing-Huen Ip |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 天文研究所 Graduate Institute of Astronomy |
| 論文出版年: | 2022 |
| 畢業學年度: | 110 |
| 語文別: | 英文 |
| 論文頁數: | 149 |
| 中文關鍵詞: | 質量吸積 、星周盤 、主序前星 、金牛T星 |
| 外文關鍵詞: | Mass accretion, Circumstellar disk, Pre-main-sequence star, T Tauri star |
| 相關次數: | 點閱:14 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
由不同質量的原恆星和星周塵埃盤組成的類金牛T星的光變曲線 大致可分為P型、D型、S型和B型。這些不同的光變曲線行為預計與 原恆星的不同磁活動和星盤動態耦合作為時間(或年齡)的函數有 關。爆發型的類金牛T星亮度增加,表明中央恆星發生了大規模質量 吸積事件。此外,爆發型類金牛T星的質量吸積會隨著恆星質量和年 齡而變化。使用開普勒太空望遠鏡和 VizieR 光度計的數據,我們 可以搜索爆發性耀斑事件水平的差異以及蛇夫座 rho 和金牛座年輕 恆星(均為 ∼1-2 Myr)和上天蠍座(∼5-10 Myr)疏散星團。爆發 中的亮度增加可以進一步用於估計質量吸積率,這與吸積盤的內部 區域有關。在我們的數據集中,我們爆發型的類金牛T星的質量吸積 率在每年2.23×10^-11和8.57×10^-5個太陽質量之間,並且大多數 爆發事件發生在II類的類金牛T星中。我們發現吸積率隨著恆星質量的增加而增加,並且金牛座成員比上天蠍座成員分佈在更高的吸積 率範圍內,這表明年輕星團中的B型類金牛T星可能具有更高的質量吸積率。
The light curves of T Tauri stars composed of protostars and circumstellar dust disks of different masses can be broadly classified into P, D, S, and B-type. These different light curve behaviors are expected to be associated with different magnetic activities of the protostars and the star-disk dynamical coupling as a function of time (or age). The burst-like T Tauri stars have increasing brightness, indicating episodes of large-scale mass accretion by the central stars. Moreover, the bursty-type T Tauri stars’ mass accretion can vary in stellar masses and ages. Using the archived data from the Kepler Space Telescope and VizieR photometry, we can search for differences in the level of bursty flare events and the evolutionary populations of young stars of the rho Ophiuchi and Taurus (both ∼ 1-2 Myr) and Upper Scorpius (∼ 5-10 Myr) open clusters. The brightness increases in the bursts can be further used to estimate the mass accretion rates, which are tied to the inner regions of the accretion disks. In our datasets, the mass accretion rates of our bursty T Tauri stars are in a range between 2.23×10−11 and 8.57×10−5 M⊙ yr−1, and most burst events occur in Class II T Tauri stars. We found that the accretion rates increase as rising stellar masses and Taurus members distributed in a higher range of accretion rate than Upper Scorpius members, which indicates that B-type T Tauri stars in the younger young cluster could have higher mass accretion rates.
[1] Suzanne Aigrain, Hannu Parviainen, and Benjamin Pope. K2SC: K2 Systematics Correction. Astrophysics Source Code Library, record ascl:1605.012. May 2016. ascl: 1605.012.
[2] Richard D. Alexander and Philip J. Armitage. “The Stellar Mass-Accretion Rate Relation in T Tauri Stars and Brown Dwarfs”. In: The Astrophysical Journal Letters 639.2 (Mar. 2006), pp. L83–L86. DOI: 10.1086/503030. arXiv: astro-ph/0602059 [astro-ph].
[3] I. Appenzeller and R. Mundt. “T Tauri stars”. In: The Astronomy and Astrophysics Review 1.3-4 (Nov. 1989), pp. 291–334. DOI: 10 . 1007 / BF00873081.
[4] S. A. Artemenko, K. N. Grankin, and P. P. Petrov. “Rotation effects in classical T Tauri stars”. In: Astronomy Letters 38.12 (Dec. 2012), pp. 783– 792. DOI: 10 . 1134 / S1063773712110011. arXiv: 1301 . 2493 [astro-ph.SR].
[5] Claude Bertout. “T Tauri stars: wild as dust.” In: Annual Review of As- tronomy and Astrophysics 27 (Jan. 1989), pp. 351–395. DOI: 10 . 1146 / annurev.aa.27.090189.002031.
[6] Claude Bertout, Gibor Basri, and Jerome Bouvier. “Accretion Disks around T Tauri Stars”. In: The Astrophysical Journ 330 (July 1988), p. 350. DOI: 10. 1086/166476.
[7] Eva H. L. Bodman et al. “Dippers and dusty disc edges: new diagnostics and comparison to model predictions”. In: Monthly Notices of the Royal As- tronomical Society 470.1 (Sept. 2017), pp. 202–223. DOI: 10.1093/mnras/ stx1034. arXiv: 1605.03985 [astro-ph.SR].
[8] J. Bouvier and C. Bertout. “Spots on T Tauri stars.” In: Astronomy and As- trophysics Program 211 (Feb. 1989), pp. 99–114.
[9] J. Bouvier, A. Chelli, et al. “Magnetospheric accretion onto the T Tauri star AA Tauri. I. Constraints from multisite spectrophotometric monitoring”. In: Astronomy and Astrophysics Program 349 (Sept. 1999), pp. 619–635.
[10] J. Bouvier, S. P. Matt, et al. “Angular Momentum Evolution of Young Low- Mass Stars and Brown Dwarfs: Observations and Theory”. In: Protostars and Planets VI. Ed. by Henrik Beuther et al. Jan. 2014, p. 433. DOI: 10. 2458/azu\_uapress\_9780816531240-ch019. arXiv: 1309.7851 [astro-ph.SR].
[11] MiljenkoCˇemeljic ́andMichałSiwak.“Light-curvevariationcausedby accretion column switching stellar hemispheres”. In: Monthly Notices of the Royal Astronomical Society 491.1 (Nov. 2019), pp. 1057–1063. ISSN: 0035- 8711. DOI: 10.1093/mnras/stz3088. eprint: https://academic. oup.com/mnras/article-pdf/491/1/1057/31094665/stz3088. pdf. URL: https://doi.org/10.1093/mnras/stz3088.
[12] H. Chen et al. “Bolometric Temperature and Young Stars in the Taurus and Ophiuchus Complexes”. In: The Astrophysical Journal 445 (May 1995), p. 377. DOI: 10.1086/175703.
[13] E. I. Chiang and P. Goldreich. “Spectral Energy Distributions of Passive T Tauri Disks: Inclination”. In: The Astrophysical Journal 519.1 (July 1999), pp. 279–284. DOI: 10 . 1086 / 307351. arXiv: astro - ph / 9812194 [astro-ph].
[14] C. J. Clarke and J. Bouvier. “A comparison of the rotational properties of T Tauri stars in Orion and Taurus”. In: Monthly Notices of the Royal Astronom- ical Society 319.2 (Dec. 2000), pp. 457–466. ISSN: 0035-8711. DOI: 10.1111/ j.1365-8711.2000.03855.x. eprint: https://academic.oup. com/mnras/article-pdf/319/2/457/4121589/319-2-457.pdf. URL: https://doi.org/10.1111/j.1365-8711.2000.03855.x.
[15] Ann Marie Cody and Lynne A. Hillenbrand. “The Many-faceted Light Curves of Young Disk-bearing Stars in Upper Sco – Oph Observed by K2 Campaign 2”. In: The Astronomical Journal 156.2, 71 (Aug. 2018), p. 71. DOI: 10.3847/1538-3881/aacead. arXiv: 1802.06409 [astro-ph.SR].
[16] Ann Marie Cody, Lynne A. Hillenbrand, Trevor J. David, et al. “A Con- tinuum of Accretion Burst Behavior in Young Stars Observed by K2”. In: The Astrophysical Journ 836.1, 41 (Feb. 2017), p. 41. DOI: 10.3847/1538- 4357/836/1/41. arXiv: 1612.05599 [astro-ph.SR].
[17] Ann Marie Cody, Lynne A. Hillenbrand, Trevor J. David, et al. “A Con- tinuum of Accretion Burst Behavior in Young Stars Observed by K2”. In: The Astrophysical Journal 836.1 (Feb. 2017), p. 41. DOI: 10.3847/1538- 4357/836/1/41. URL: https://doi.org/10.3847/1538-4357/ 836/1/41.
[18] Ann Marie Cody, John Stauffer, et al. “CSI 2264: Simultaneous Optical and Infrared Light Curves of Young Disk-bearing Stars in NGC 2264 with CoRoT and Spitzer—Evidence for Multiple Origins of Variability”. In: The Astronomical Journal 147.4, 82 (Apr. 2014), p. 82. DOI: 10.1088/0004- 6256/147/4/82. arXiv: 1401.6582 [astro-ph.SR].
[19] S. Colombo et al. “New view of the corona of classical T Tauri stars: Ef- fects of flaring activity in circumstellar disks”. In: Astronomy and Astro- physics Program 624, A50 (Apr. 2019), A50. DOI: 10.1051/0004-6361/ 201834342. arXiv: 1902.07048 [astro-ph.SR].
[20] PT De Zeeuw et al. “A Hipparcos census of the nearby OB associations”. In: The Astronomical Journal 117.1 (1999), p. 354.
[21] Jeremy J. Drake et al. “X-ray Photoevaporation-Starved T Tauri Accre- tion”. In: The Astrophysical Journal Letters 699.1 (July 2009), pp. L35–L38. DOI: 10.1088/0004-637X/699/1/L35. arXiv: 0905.1690 [astro-ph.HE].
[22] M. M. Dunham et al. “The Evolution of Protostars: Insights from Ten Years of Infrared Surveys with Spitzer and Herschel”. In: Protostars and Planets VI. Ed. by Henrik Beuther et al. Jan. 2014, p. 195. DOI: 10 . 2458/azu\_uapress\_9780816531240-ch009. arXiv: 1401.1809 [astro-ph.GA].
[23] A. Garufi et al. “Disks Around T Tauri Stars with SPHERE (DARTTS-S) - II. Twenty-one new polarimetric images of young stellar disks”. In: A&A 633 (2020), A82. DOI: 10.1051/0004-6361/201936946. URL: https: //doi.org/10.1051/0004-6361/201936946.
[24] Thomas P. Greene et al. “Further Mid-Infrared Study of the rho Ophiuchi Cloud Young Stellar Population: Luminosities and Masses of Pre–Main- Sequence Stars”. In: The Astrophysical Journ 434 (Oct. 1994), p. 614. DOI: 10.1086/174763.
[25] Erik Gullbring et al. “Disk Accretion Rates for T Tauri Stars”. In: The As- trophysical Journal 492.1 (Jan. 1998), pp. 323–341. DOI: 10.1086/305032.
[26] Lee Hartmann, Nuria Calvet, et al. “Accretion and the Evolution of T Tauri Disks”. In: The Astrophysical Journal 495.1 (Mar. 1998), pp. 385–400. DOI: 10.1086/305277. URL: https://doi.org/10.1086/305277.
[27] Lee Hartmann, Gregory Herczeg, and Nuria Calvet. “Accretion onto Pre- Main-Sequence Stars”. In: Annual Review of Astronomy and Astrophysics 54.1 (2016), pp. 135–180. DOI: 10.1146/annurev-astro-081915-023347. eprint: https://doi.org/10.1146/annurev-astro-081915- 023347. URL: https://doi.org/10.1146/annurev-astro- 081915-023347.
[28] Lee Hartmann, Robert Hewett, and Nuria Calvet. “Magnetospheric Accre- tion Models for T Tauri Stars. I. Balmer Line Profiles without Rotation”. In: The Astrophysical Journal 426 (May 1994), p. 669. DOI: 10.1086/174104.
[29] W. Herbst et al. “The Rotation of Young Low-Mass Stars and Brown Dwarfs”. In: Protostars and Planets V. Ed. by Bo Reipurth, David Jewitt, and Klaus Keil. Jan. 2007, p. 297. arXiv: astro-ph/0603673 [astro-ph].
[30] Michiel R. Hogerheijde. “Protoplanetary Disk”. In: Encyclopedia of Astro- biology. Ed. by Muriel Gargaud et al. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011, pp. 1357–1366. ISBN: 978-3-642-11274-4. DOI: 10.1007/ 978-3-642-11274-4_1299. URL: https://doi.org/10.1007/ 978-3-642-11274-4_1299.
[31] N. Ismailov and H. Adygezalzade. “LIGHT CURVE TYPES OF CLAS- SIC T TAURI STARS”. In: Odessa Astronomical Publications 28 (June 2015), pp. 227–230. DOI: 10.18524/1810-4215.2015.28.71015.
[32] Tanveer Karim et al. “The Rotation Period Distributions of 4-10 Myr T Tauri Stars in Orion OB1: New Constraints on Pre-main-sequence Angular Momentum Evolution”. In: The Astronomical Journal 152.6, 198 (Dec. 2016), p. 198. DOI: 10.3847/0004-6256/152/6/198. arXiv: 1605.04333 [astro-ph.SR].
[33] S. J. Kenyon and L. Hartmann. “Spectral Energy Distributions of T Tauri Stars: Disk Flaring and Limits on Accretion”. In: The Astrophysical Journ 323 (Dec. 1987), p. 714. DOI: 10.1086/165866.
[34] Scott J. Kenyon and Lee Hartmann. “Pre-Main-Sequence Evolution in the Taurus-Auriga Molecular Cloud”. In: The Astrophysical Journal Supplement Series 101 (Nov. 1995), p. 117. DOI: 10.1086/192235.
[35] Á. Kóspál et al. “Spots, Flares, Accretion, and Obscuration in the Pre- main-sequence Binary DQ Tau”. In: The Astrophysical Journal 862.1, 44 (July 2018), p. 44. DOI: 10.3847/1538-4357/aacafa. arXiv: 1806.01546 [astro-ph.SR].
[36] Adam L. Kraus et al. “THE MASS–RADIUS RELATION OF YOUNG STARS. I. USCO 5, AN M4.5 ECLIPSING BINARY IN UPPER SCORPIUS OBSERVED BY K2”. In: The Astrophysical Journal 807.1 (June 2015), p. 3. DOI: 10.1088/0004-637x/807/1/3. URL: https://doi.org/10. 1088/0004-637x/807/1/3.
[37] E. E. Mamajek. “On the distance to the Ophiuchus star-forming region”. In: Astronomische Nachrichten 329.1 (Jan. 2008), p. 10. DOI: 10 . 1002 / asna.200710827. arXiv: 0709.0505 [astro-ph].
[38] C. F. Manara et al. “X-shooter survey of disk accretion in Upper Scor- pius. I. Very high accretion rates at age > 5 Myr”. In: Astronomy and As- trophysics Program 639, A58 (July 2020), A58. DOI: 10.1051/0004-6361/ 202037949. arXiv: 2004.14232 [astro-ph.SR].
[39] E. Moraux et al. “The Monitor Project: stellar rotation at 13 Myr. I. A photo- metric monitoring survey of the young open cluster h Persei”. In: Astron- omy and Astrophysics Program 560, A13 (Dec. 2013), A13. DOI: 10.1051/ 0004-6361/201321508. arXiv: 1306.6351 [astro-ph.SR].
[40] R. Neuhaeuser et al. “ROSAT survey observation of T Tauri stars in Tau- rus.” In: Astronomy and Astrophysics Program 297 (May 1995), p. 391.
[41] Mark J Pecaut, Eric E Mamajek, and Eric J Bubar. “A REVISED AGE FOR UPPER SCORPIUS AND THE STAR FORMATION HISTORY AMONG THE F-TYPE MEMBERS OF THE SCORPIUS–CENTAURUS OB ASSOCI- ATION”. In: The Astrophysical Journal 746.2 (2012), p. 154.
[42] L. M. Rebull et al. “Rotation of Low-mass Stars in Taurus with K2”. In: The Astronomical Journal 159.6, 273 (June 2020), p. 273. DOI: 10.3847/1538- 3881/ab893c. arXiv: 2004.04236 [astro-ph.SR].
[43] L. M. Rebull et al. “VizieR Online Data Catalog: Taurus members & non- members with K2 data (Rebull+, 2020)”. In: VizieR Online Data Catalog, J/AJ/159/273 (Aug. 2020), J/AJ/159/273.
[44] A. P. Sousa et al. “CSI 2264: Accretion process in classical T Tauri stars in the young cluster NGC 2264”. In: Astronomy and Astrophysics Program 586, A47 (Feb. 2016), A47. DOI: 10.1051/0004-6361/201526599. arXiv: 1509.05354 [astro-ph.SR].
[45] S. Terebey, F. H. Shu, and P. Cassen. “The collapse of the cores of slowly rotating isothermal clouds”. In: The Astrophysical Journ 286 (Nov. 1984), pp. 529–551. DOI: 10.1086/162628.
[46] Benjamin M. Tofflemire et al. “ACCRETION AND MAGNETIC RECON- NECTION IN THE CLASSICAL T TAURI BINARY DQ TAU”. In: The As- trophysical Journal 835.1 (Jan. 2017), p. 8. DOI: 10.3847/1538-4357/ 835/1/8. URL: https://doi.org/10.3847/1538-4357/835/1/8.
[47] R. J. White et al. “Stellar Properties of Embedded Protostars”. In: Protostars and Planets V. Ed. by Bo Reipurth, David Jewitt, and Klaus Keil. Jan. 2007, p. 117. arXiv: astro-ph/0604081 [astro-ph].
[48] Barbara A. Whitney et al. “Two-dimensional Radiative Transfer in Pro- tostellar Envelopes. II. An Evolutionary Sequence”. In: The Astrophysical Journ 598.2 (Dec. 2003), pp. 1079–1099. DOI: 10.1086/379068. arXiv: astro-ph/0309007 [astro-ph].