| 研究生: |
唐啟賢 Chi-Hsien Tang |
|---|---|
| 論文名稱: |
1999 集集地震震後滑移與黏彈性變形之線性反演分析 Linear inversion for afterslip and viscoelastic flow through the postseismic deformation following the 1999 Mw 7.6 Chi-Chi, Taiwan earthquake |
| 指導教授: |
許雅儒
Ya-Ju Hsu 張午龍 Wu-Lung Chang |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
地球科學學院 - 地球科學學系 Department of Earth Sciences |
| 論文出版年: | 2016 |
| 畢業學年度: | 104 |
| 語文別: | 中文 |
| 論文頁數: | 133 |
| 中文關鍵詞: | 全球導航衛星系統 、震後變形 、線性反演 、流變學 |
| 外文關鍵詞: | GNSS, Postseismic deformation, Linear Inversion, Rheology |
| 相關次數: | 點閱:14 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究分析1999年台灣集集地震之震後變形,使用台灣中部以及東部橫跨地震後14年的GPS連續觀測與定期觀測結果,進行時間序列分析得到集集地震震後地表位移。我們透過彈性半空間斷層錯位模型與體積應變模型,分別考慮車籠埔斷層以及台灣深部流變構造的幾何形態,建立斷層模型與黏彈性模型之格林函數,並且利用震後地表速度作為資料進行反演,計算斷層面上的震後滑移速率,以及下部地殼的應變速率隨時間的演進,藉此估算斷層面上的速度-狀態相關摩擦係數(a–b)及下部地殼的有效黏滯係數。我們發現,若加入考慮下部地殼的應變,將會得到截然不同的斷層滑移分布。反演結果顯示車籠埔斷層南段的斷層滑移速率,在集集地震震後初期可達到1 m/yr,並且在震後四年內快速衰減至低於0.1 m/yr,並估算出斷層面上的速度-狀態相關摩擦係數(a–b)約為9.4e-3,與前人研究所認為的量值相符合。然而,在有效黏滯係數的估算上,本研究使用岩石試驗參數所估算的有效黏滯係數比前人所認為的大了約10倍,可能代表實驗室與現地環境溫壓條件的不同,導致此計算仍有相當程度的不確定性。若是考慮同震庫倫應力變化,有效黏滯係數皆大約由1e18 Pa•s遞增至1e19 Pa•s,與前人研究所認為的範圍差異不大。未來若能使用更符合現地環境狀態的岩石試驗參數,此分析方法將能更有效地評估震後下部地殼與上部地函之間的黏滯係數隨時間的變化情形。
We use GPS observations in central and eastern Taiwan to derive the postseismic deformation following the 1999 Mw 7.6 Chi-Chi, Taiwan earthquake across 14 years. Combining 3D half-space dislocation model and finite-volume strain model with the geometries of the Chelungpu fault and the rheological structure beneath Taiwan, we calculate the slip rate on the fault and the strain rate in the lower crust by linear inversion. The comparison between the afterslip model and the model combining with strain in the lower crust shows the different slip distribution. The inversion shows that the slip rate on the southern segment of the Chelungpu fault decays from 1 m/yr to 0.1 m/yr during the four years after the mainshock. The steady-state friction property (a–b)is about 9.4e-3, which is in good agreement with several previous studies. However, our estimation on the effective viscosity by the laboratory-measured parameters fails to agree with the general values, which may cause by the different pressure-temperature conditions between the experiment and in-situ environment. If we constrain the calculation by the Coulomb stress change from the coseismic slip model of Chi-Chi earthquake, the effective viscosity varies from about 1e18 Pa•s to 1e19 Pa•s during the 14 years after the mainshock, which falls within a reasonable range.
Angelier J., J. C. Lee, H. T. Chu, J. C. Hu, C. Y. Lu, Y. C. Chan, T. J. Lin, Y. Font, B. Deffontaines, & Y. B. Tsai (2001), Le séisme de Chichi (1999) et sa place dans l'orogène de Taiwan. C. R. Acad. Sci. Paris, IIa, 333(1), 5-21.
Avouac J. P. (2015), From geodetic imaging of seismic and aseismic fault slip to dynamic modeling of the seismic cycle, Annu. Rev. Earth Planet. Sci.. 43, 233-271.
Barbot, S., Y. Fialko, & Y. Bock (2009), Postseismic deformation due to the Mw 6.0 2004 Parkfield earthquake: Stress-driven creep on a fault with spatially variable rate-and-state friction parameters, J. Geophys. Res., 114, doi:10.1029/2008JB005748.
Barbot, S., & Y. Fialko (2010a), Fourier-domain Green’s function for an elastic semi-infinite solid under gravity, with applications to earthquake and volcano deformation, Geophys. J. Int., 182(2), 568– 582.
Barbot, S., & Y. Fialko (2010b), A unified continuum representation of postseismic relaxation mechanisms: Semi-analytic models of afterslip, poroelastic rebound and viscoelastic flow, Geophys. J. Int., 182(3), 1124-1140.
Barbot S, N. Lapusta & J. P. Avouac (2012), Under the hood of the earthquake machine: toward predictive modeling of the seismic cycle, Science, 336, 707-710.
Bedford J., M. Moreno, J. C. Baez, D. Lange, F. Tilmann, M. Rosenau, O. Heidbach, O. Oncken, M. Bartsch, A. Rietbrock, A. Tassara, M. Bevis & C. Vigny (2013), A high-resolution, time-variable afterslip model for the 2010 Maule Mw = 8.8, Chile megathrust earthquake, Earth Planet. Sci. Lett., 383, 26-36.
Bürgmann, R., & G. Dresen (2008), Rheology of the lower crust and upper mantle: Evidence from rock mechanics, geodesy, and field observations, Annu. Rev. Earth Planet. Sci., 36, 531-567.
Carter, N. L., & M. C. Tsenn (1987), Flow properties of continental lithosphere, Tectonophysics, 136, 27-63.
Chan, C. H. & R. S. Stein (2009), Stress evolution following the 1999 Chi-Chi, Taiwan, earthquake: consequences for afterslip, relaxation, aftershocks and departures from Omori decay. Geophys. J. Int., 177, 179-192.
Chang, S. H., W. H. Wang, & J. C. Lee (2009), Modeling surface creep of the Chihshang fault in eastern Taiwan with velocity-strengthening friction, Geophys. J. Int., 176(2), 601-613.
Chang, S. H., J. P. Avouac, S. Barbot, & J. C. Lee (2013), Spatially variable fault friction derived from dynamic modeling of aseismic afterslip due to the 2004 Parkfield earthquake, J. Geophys. Res. Solid Earth, 118, 3431-3447.
Chlieh, M., J. P. Avouac, V. Hjorleifsdottir, T. R. A. Song, C. Ji, K. Sieh, A. Sladen, H. Hebert, L. Prawirodirdjo, Y. Bock, & J. Galetzka (2007), Coseismic slip and afterslip of the great Mw 9.15 Sumatra–Andaman earthquake of 2004, Bull. Seism. Soc. Am., 97(1A), S152-S173.
Dieterich J. H. (1979), Modeling of rock friction, 1: Experimental results and constitutive equations, J. Geophys. Res., 84, 2161-2168.
Dong, D., T. A. Herring, & R. W. King (1998), Estimating regional deformation from a combination of space and terrestrial geodetic data, J. Geodesy, 72, 200-214.
Feigl, K. L., D. C. Agnew, Y. Bock, D. Dong, A. Donnellan, B. H. Hager, T. A. Herring, D. D. Jackson, T. H. Jordan, R. W. King, S. Larsen, K. M. Larson, M. H. Murray, Z. Shen, & F. H. Webb (1993), Space geodetic measurement of crustal deformation in Central and Southern California, 1984-1992, J. Geophys. Res., 98(12), 21677-21712.
Freed, A. M., & R. Bürgmann (2004), Evidence of power-law flow in the Mojave Desert mantle, Nature, 430, 548-551.
Freed, A. M., R. Bürgmann, E. Calais, J. Freymueller, & S. Hreinsdóttir (2006a), Implications of deformation following the 2002 Denali, Alaska, earthquake for postseismic relaxation processes and lithospheric rheology, J. Geophys. Res., 111, doi:10.1029/2005JB003894.
Freed, A. M., R. Bürgmann, E. Calais, & J. Freymueller (2006b), Stress-dependent power-law flow in the upper mantle following the 2002 Denali, Alaska, earthquake, Earth Planet. Sci. Lett., 252, 481-489.
Freed, A. M., R. Bürgmann, & T. Herring (2007), Far-reaching transient motions after Mojave earthquakes require broad mantle flow beneath a strong crust, Geophys. Res. Lett., 34, doi:10.1029/2007GL030959.
Fukuda, J., A. Kato, N. Kato, & Y. Aoki (2013), Are the frictional properties of creeping faults persistent? Evidence from rapid afterslip following the 2011 Tohoku-oki earthquake, Geophys. Res. Lett., 40, 3613-3617.
Hao, M., D. Cui, Q. Wang, W. Gan, S. Qin & W. Wang (2013), Spatial distribution of afterslip for the 2008 Wenchuan earthquake, China, Geophys. J. Int., 194(3), doi: 10.1093/gji/ggt223.
Herring, T. A., J. L. Davis, & I. I. Shapiro (1990), Geodesy by radio interferometry: The application of Kalman filtering to the analysis of very long baseline interferometry data, J. Geophys. Res., 95, 12561-12581.
Hsu, Y. J., N. Bechor, P. Segall, S. B. Yu, L. C. Kuo, & K. F. Ma (2002), Rapid afterslip following the 1999 Chi-Chi, Taiwan earthquake, Geophys. Res. Lett., 29, doi:10.1029/2002GL014967.
Hsu, Y. J., M. Simons, J. P. Avouac, J. Galetzka, K. Sieh, M. Chlieh, D. Natawidjaja, L. Prawirodirdjo, & Y. Bock (2006), Friction afterslip following the 2005 Nias-Simeulue earthquake, Sumatra, Science, 312, 1921-1926.
Hsu, Y. J., P. Segall, S. B. Yu, L. C. Kuo, & C. A. Williams (2007), Temporal and spatial variations of post-seismic deformation following the 1999 Chi-Chi, Taiwan earthquake, Geophys. J. Int., 169, 367-379.
Hsu, Y. J., J. P. Avouac, S. B. Yu, C. H. Chang, Y. M. Wu, & J. Woessner (2009a), Spatio-temporal slip, and stress level on the faults within the western foothills of Taiwan: Implications for fault frictional properties, Pure Appl. Geophys., 166(10), 1853-1884.
Hsu, Y. J., S. B. Yu, & H. Y. Chen (2009b), Coseismic and postseismic deformation associated with the 2003 Chengkung, Taiwan, earthquake, Geophys. J. Int., 176(2), 420-430.
Jeyakumaran, M., J. W. Rudnicki, & L. M. Keer (1992), Modeling slip zones with triangular dislocation elements, Bull. Seism. Soc. Am., 82, 2153–2169.
Johnson, K. M., Y. J. Hsu, P. Segall, & S. B. Yu (2001), Fault geometry and slip distribution of the 1999 Chi-Chi, Taiwan earthquake imaged from inversion of GPS data, Geophys. Res. Lett., 28, 2285-2288.
Johnson, K. M., & P. Segall (2004), Imaging the ramp-décollement geometry of the Chelungpu fault using coseismic GPS displacements from the 1999 Chi-Chi, Taiwan earthquake, Tectonophys, 378, 123-139.
Johnson, K. M., R. Bürgmann, & K. Larson (2006), Frictional properties on the San Andreas fault near Parkfield, California, inferred from models of afterslip following the 2004 earthquake, Bull. Seism. Soc. Am., 96, S321-S338.
Jouanne, F., A. Awan, A. Madji, A. Pêcher, M. Latif, A. Kausar, J. L. Mugnier, I. Khan, & N. A. Khan (2011), Postseismic deformation in Pakistan after the 8 October 2005 earthquake: Evidence of afterslip along a flat north of the Balakot‐Bagh thrust, J. Geophys. Res., 116, doi:10.1029/2010JB007903.
Kuo-Chen, H., F. T. Wu, D. M. Jenkins, J. Mechie, S. W. Roecker, C. Y. Wang, & B. S. Huang (2012), Seismic evidence for the α-β quartz transition beneath Taiwan from Vp/Vs tomography, Geophys. Res. Lett., 39, doi:10.1029/2012GL053649.
Lin, C. H. (2000), Thermal modeling of continental subduction and exhumation constrained by heat flow and seismicity in Taiwan, Tectonophysics, 324, 189-201.
Lin, Y. n. N., A. Sladen, F. Ortega-Culaciati, M. Simons, J. P. Avouac, E. J. Fielding, B. A. Brooks, M. Bevis, J. Genrich, A. Rietbrock, C. Vigny, R. Smalley, & A. Socquet (2013), Coseismic and postseismic slip associated with the 2010 Maule Earthquake, Chile: Characterizing the Arauco Peninsula barrier effect, J. Geophys. Res. Solid Earth, 118, 3142-3159.
Loevenbruck A., R. Cattin, X. Le Pichon, M. L. Courty, & S. B. Yu (2001), Seismic cycle in Taiwan derived from GPS measurements. C.R. Acad. Sci. II, 333, 57-64.
Loevenbruck, A., R. Cattin, X. Le Pichon, S. Dominguez, & R. Michel (2004), Coseismic slip resolution and post-seismic relaxation time of the 1999 Chi-Chi, Taiwan, earthquake as constrained by geological observations, geodetic measurements and seismicity, Geophys. J. Int., 158, 310-326.
Ma, K. F., C. H. Chan, & R. S. Stein (2005), Response of seismicity to Coulomb stress triggers and shadows of the 1999 Mw = 7.6 Chi-Chi, Taiwan, earthquake, J. Geophys. Res., 110, doi:10.1029/2004JB003389.
Maerten, F., P. Resor, D. Pollard, & L. Maerten, (2005), Inverting for slip on three- dimensional fault surfaces using angular dislocations, Bull. seism. Soc. Am., 95(5), 1654-1665.
Marone C. (1998), Laboratory-derived friction laws and their application to seismic faulting, Annu. Rev. Earth Planet. Sci., 26, 643-696.
Masuti, S. S., S. Barbot, & N. Kapre (2014), Relax-Miracle: GPU parallelization of semi-analytic Fourier-domain solvers for earthquake modeling, High Performance Computing (HiPC), 2014 21st International Conference.
Mavrommatis, A. P., P. Segall, & K. M. Johnson (2014), A decadal-scale deformation transient prior to the 2011 Mw 9.0 Tohoku-oki earthquake, Geophys. Res. Lett., 41, 4486-4494.
Meade, B. J. (2007), Algorithms for the calculation of exact displacements, strains, and stresses for triangular dislocation elements in a uniform elastic half space, Comput. Geosci., 33(8), 1064-1075.
Meng, C. Y. (1960), San-I overthrust, Petro. Geol. Taiwan, 2, 1-20.
Nikkhoo, M., & T. R. Walter (2015), Triangular dislocation: an analytical, artefact-free solution. Geophys. J. Int., 201(2), 1117-1139.
Nikolaidis, R. (2002), Observation of geodetic and seismic deformation with the Global Positioning System, Ph.D. dissertation, University of California, San Diego.
Okada, Y. (1985), Surface deformation due to shear and tensile faults in a half-space, Bull. Seism. Soc. Am., 75, 1135-1154.
Okada, Y. (1992), Internal deformation due to shear and tensile faults in a half-space, Bull. Seism. Soc. Am., 82, 1018-1040.
Ozawa, S., T. Nishimura, H. Suito, T. Kobayashi, M. Tobita, & T. Imakiire (2011), Coseismic and postseismic slip of the 2011 magnitude-9 Tohoku-Oki earthquake, Nature, 475, 373-376.
Perfettini, H., & J. P. Avouac (2004), Postseismic relaxation driven by brittle creep: A possible mechanism to reconcile geodetic measurements and the decay rate of aftershocks, application to the Chi-Chi earthquake, Taiwan, J. geophys. Res., 109, doi:10.1029/2003JB002488.
Pollitz, F. F. (2003), Transient rheology of the uppermost mantle beneath the Mojave Desert, California, Earth Planet. Sci. Lett., 215, 89-104.
Pollitz, F. F. (2005), Transient rheology of the upper mantle beneath central Alaska inferred from the crustal velocity field following the 2002 Denali earthquake, J. Geophys. Res., 110, doi:10.1029/2005JB003672.
Reilinger, R. E., S. Ergintav, R. Burgmann, S. McClusky, O. Lenk, A. Barka, O. Gurkan, L. Hearn, K. L. Feigl, R. Cakmak, B. Aktug, H. Ozener, & M. N. Toksoz (2000), Coseismic and postseismic fault slip for the 17 August 1999, M=7.5, Izmit, Turkey earthquake, Science, 289, 1519-1523.
Rollins C., S. Barbot, & J. P. Avouac (2015), Postseismic deformation following the 2010 M=7.2 El Mayor-Cucapah earthquake: Observations, kinematic inversions, and dynamic models, Pure Appl. Geophys., 172, 1305-1358.
Rousset, B., S. Barbot, J. P. Avouac, and Y. J. Hsu (2012), Postseismic deformation following the 1999 Chi-Chi earthquake, Taiwan: Implication for lower-crust rheology, J. Geophys. Res., 117, doi:10.1029/2012JB009571.
Ruina A. (1983), Slip instability and state variable friction laws, J. Geophys. Res., 88, 10359-10370.
Rundle, J. B. (1982), Viscoelastic-gravitational deformation by a rectangular thrust fault in a layered earth, J. Geophys. Res., 87, 7787-7796.
Simoes, M., J. P. Avouac, O. Beyssac, B. Goffe´, K. A. Farley, and Y. G. Chen (2007), Mountain building in Taiwan: A thermokinematic model, J. Geophys. Res., 112, doi:10.1029/2006JB004824.
Seno, T., S. Stein, & A. E. Gripp (1993), A model for the Motion of the Philippine Sea Plate consistent with Nuvel-1 and geological Data, J. Geophys. Res., 98, 17941-17948.
Shelton, G. L., & J. A. Tullis (1981), Experimental flow laws for crustal rocks, Trans. Am. Geophys. Un., 62, 396.
Shen, Z. K., D. D. Jackson, Y. Feng, M. Cline, M. Kim, P. Fang, & Y. Bock (1994), Postseismic deformation following the Landers earthquake, California, 28 June 1992, Bull. Seism. Soc. Am., 84, 780-791.
Sheu, S. Y., & C. F. Shieh (2004), Viscoelastic-afterslip concurrence: A possible mechanism in the early post-seismic deformation of the Mw 7.6, 1999 Chi-Chi (Taiwan) earthquake, Geophys. J. Int., 159, 1112-1124.
Smith, S. W., & M. Wyss (1968), Displacement on the San Andreas Fault subsequent to the 1966 Parkfield earthquake, Bull. Seism. Soc. Am., 58, 1955-1973.
Teng, L. S. (1990), Geotectonic evolution of late Cenozoic arc-continent collision in Taiwan. Tectonophysics, 183, 57-76.
Wei, S., S. Barbot, R. Graves, J. J. Lienkaemper, T. Wang, K. Hudnut, Y. Fu, & D. Helmberger (2015), The 2014 Mw 6.1 South Napa earthquake: A unilateral rupture with shallow asperity and rapid afterslip, Seism. Res. Lett. , 86(2A), 344-354.
Wu, F. T., C. S. Chang, & Y. M. Wu (2004), Precisely relocated hypocenters, focal mecahnisms and active orogeny in central Taiwan, Aspects of the Tectonic Evolution of China, Geological Society of London, Special Publications, 226, 333-353.
Wu, F. T., H. Kuo-Chen, & K. D. McIntosh (2014). Subsurface imaging, TAIGER experiments and tectonic models of Taiwan, J. Asian Earth Sci., 90, 173-208.
Yamato P., F. Mouthereau, & E. Burov (2009), Taiwan mountain building: insight from 2D thermomechanical modeling of a rheologically stratified lithosphere, Geophys. J. Int., 176, 307-326.
Yoffe, E. H. (1960), The angular dislocation, Philos. Mag., 5(50), 161-175.
Yu, S. B., H. Y. Chen, & L. C. Kuo (1997), Velocity field of GPS stations in the Taiwan area, Tectonophysics, 274, 41-59.
Yu, S. B., L. C. Kuo, R. S. Punongbayan, & E. G. Ramos (1999), GPS observation of crustal deformation in the Taiwan-Luzon region, Geophys. Res. Lett., 26, 923-926.
Yu, S. B., L. C. Kuo, Y. J. Hsu, H. H. Su, C. C. Liu, C. S. Hou, J. F. Lee, T. C. Lai, C. C. Liu, C. L. Liu, T. F. Tseng, C. S. Tsai, & T. C. Shin (2001), Preseismic Deformation and Coseismic Displacement Associated with 1999 Chi-Chi, Taiwan, Earthquake, Bull. Seism. Soc. Am., 91(5), 995-1012.
Yu, S. B., Y. J. Hsu, L. C. Kuo, H. Y. Chen, & C. C. Liu, (2003), GPS measurement of postseismic deformation following the 1999 Chi-Chi, Taiwan, earthquake, J. geophys. Res., 108, doi:10.1029/2003JB002396.
中國石油公司,台灣西部地質圖(1974),中國石油公司台灣油礦探勘總處編印,苗栗圖幅(1:100,000)。
中國石油公司,台灣西部地質圖(1982),中國石油公司台灣油礦探勘總處編印,台中圖幅(1:100,000)。
中國石油公司,台灣西部地質圖(1986),中國石油公司台灣油礦探勘總處編印,嘉義圖幅(1:100,000)。
李元希、盧詩丁、石同生、林偉雄、林燕慧、劉彥求、黃存慧(2001),經濟部中央地質調查所施政計畫報告-活動斷層調查報告,經濟部中央地質調查所,車籠埔斷層調查。
何春蓀(1959),臺灣中部臺中與南投間之逆衝斷層構造,臺灣省地質調查所彙刊,第11號,13-20頁。
何春蓀(1982),台灣地體構造的演變:台灣地體構造圖說明書,經濟部中央地質調查所。
何春蓀(1986), 台灣地質概論:台灣地質圖說明書 (增訂第二版)。經濟部中央地質調查所。
林朝棨(1957),地形(土地志,地理篇,第一冊),台灣省通志稿卷一,台灣省文獻委員會出版。
許雅儒(2004),集集地震之震前、同震及震後變形模式研究,國立中央大學地球物理研究所博士論文。
陳勉銘、陳華玟、林啟文、黃存慧(2001),經濟部中央地質調查所施政計畫報告-活動斷層調查報告,經濟部中央地質調查所,彰化斷層調查。
黃文正、林啟文、劉思妤、林燕慧、吳維毓(1999),經濟部中央地質調查所施政計畫報告-活動斷層調查報告,經濟部中央地質調查所,大茅埔-雙冬斷層調查。
蔡宜純(2006),1999集集地震後之黏彈性鬆弛效應,國立中央大學地球物理研究所碩士論文。
賴家祥(2004),車籠埔斷層面起伏構造之研究,國立中央大學應用地質研究所碩士論文,第14頁。