跳到主要內容

簡易檢索 / 詳目顯示

研究生: 吳俊逸
Jian-Yi Wu
論文名稱: 土壤液化引致地盤永久位移之研究
指導教授: 黃俊鴻
Jing-Hung Hwang
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
畢業學年度: 88
語文別: 中文
論文頁數: 108
相關次數: 點閱:7下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

  • 具破壞性之地變型態。以九二一集集大地震為例,台中港碼頭區、貓
    羅溪堤防、南投縣霧峰鄉旱溪河岸太子城堡社區及彰化縣員林鎮等地
    區皆因土壤液化所引致的地盤位移而產生嚴重的破壞。因此針對此高
    危險性之破壞形態,實有必要加以深入研究。
    Newmark (1965)滑塊模式為工程實務上最常用的地盤變位分析
    方法,其中假設滑動土體為剛性體,此剛性體在一平面上滑動。於地
    震作用過程中,當地震所產生之加速度超過土體之降伏加速度時,使
    得土體慣性力大於滑動阻抗力,因而產生下坡方向之地盤永久位移,
    其大小可由塊體對破壞面之相對加速度經兩次積分後求得。
    在應用Newmark滑塊模式時,有一項非常重要的參數必須確定,
    此參數即是不排水剪力強度(Su)。本研究於液化場址取得液化土樣,
    並採溼搗法製作重模土體以進行三軸壓密不排水剪力強度試驗(CIU
    test),待獲得Su 後,即可求得降伏加速度,再利用相對運動之觀念,
    進一步得到地盤之側向流動永久位移。
    針對九二一集集大震,台灣發生液化地區進行現地取樣,經由一
    系列室內試驗瞭解液化土壤之基本性質與強度特性,藉由Newmark
    滑塊理論推估永久位移量,與現地量測之位移值作一比較,結果顯示
    Newmark 滑塊理論之適用性良好,唯須注意現地地形之量測所造成
    之誤差。上述研究之成果可進一步建立台灣本土之土壤液化所引致地
    盤永久位移之資料,爾後供作防災、救災之參考。


    Liquefaction induced permanent horizontal displacement is one of
    the most destructive ground failures during strong earthquake. During
    Chi-Chi earthquake, severe damage as caused by permanent horizontal
    displacement induced by soil liquefaction in many areas. Therefore, it
    becomes very important to predict the permanent displacement with a
    degree of reasonable accuracy to provide a reference for hazard
    prevention.
    This study documented and mapped the case histories of lateral
    spreading occurred during Chi-Chi earthquake. The liquefied soils were
    remolded and tested to obtain the steady-state strength by the triaxial
    undrained test. Relationships between normalized steady-state strength
    and relative density Dr or normalized standard penetration value (N1)60
    were established for four kinds of liquefied soils. Newmark’s rigid block
    sliding model is used to estimate the permanent horizontal displacement
    with the steady-state strength parameter obtained from laboratory . It was
    found that the estimated displacements are in acceptable agreement with
    those measured in the field after earthquake.

    摘要...................................................................................................... I 英文摘要............................................................................................ Ⅱ 目錄................................................................................................... IV 圖目錄.............................................................................................. VII 表目錄............................................................................................... XI 第一章緒論........................................................................................ 1 1.1 研究背景...............................................................................1 1.2 研究目的...............................................................................2 第二章文獻回顧................................................................................ 5 2.1 Newmark 滑動模式................................................................5 2.1.1 基本假設與分析模型...................................................5 2.1.2 永久水平位移計算.......................................................6 2.2 最小勢能法模式....................................................................7 2.2.1 基本假設與分析模型...................................................7 2.2.2 永久水平位移計算.......................................................8 2.2.3 永久水平位移之閉合解.............................................13 2.3 有限元素動態模式模式.......................................................14 2.4 經驗模式.............................................................................15 2.4.1 液化嚴重指標(Liquefaction Severity Index,LSI)..........15 V 2.4.2 Hamada 經驗法..........................................................17 2.5 綜合評述.............................................................................18 第三章室內試驗方法與結果分析.................................................... 24 3.1 試驗目的.............................................................................24 3.2 試驗內容.............................................................................24 3.3 試驗方法.............................................................................25 3.4 試驗儀器與相關之設備.......................................................25 3.4.1 篩分析與比重計試驗儀器..........................................26 3.4.2 阿太堡塑性限度試驗.................................................26 3.4.3 實驗室三軸壓縮試驗系統..........................................27 3.5 試驗土樣與試體準備..........................................................29 3.6 試驗步驟.............................................................................30 3.7 試驗數據處理......................................................................32 3.8 試驗結果分析與應用..........................................................33 3.8.1 建立土體之臨界狀態線.............................................33 3.8.2 殘餘剪力強度(Residual Shear Strength)之選取與應用33 第四章Newmark 滑塊模式數值程式之發展與驗證........................ 59 4.1 Newmark 滑動塊模式...........................................................60 4.1.1 降伏加速度(ay)與不排水剪力強度(Su) .......................60 4.2 數值程式之發展..................................................................62 4.3 數值程式之驗證..................................................................64 4.3.1 地震波為三角型之輸入驗證......................................65 4.3.2 地震波為正弦型之輸入驗證......................................66 4.4 結語.....................................................................................67 第五章側向流動案例分析............................................................... 73 5.1 貓羅溪沿岸液化土壤描述...................................................73 5.2 貓羅溪沿岸側向流動分析...................................................74 5.2.1 原始流動剖面之建立.................................................75 5.2.2 應用STABL5M 預估破壞面之ay 值..........................75 5.2.3 地震加速度資料之處理.............................................76 5.3 案例分析結果與現地量測資料之比較................................77 第六章結論與建議.......................................................................... 97 6.1 結論.....................................................................................97 6.2 建議.....................................................................................98 參考文獻..........................................................................................100 附錄一..............................................................................................105

    1. Bartlett, S.F. and T.L., Youd, “Empirical analysis of horizontal ground
    displacement generated by liquefaction-induced lateral spread, ”
    Technical Report NCEER-92-0021, National Center for Earthquake
    Engineering Research, State University of New York, Buffalo (1990).
    2. Bartlett, S.F. and T.L., Youd, “Evaluation of liquefaction-induced
    ground failures displacement associated with soil liquefaction :
    compilation of case histories, ” Miscellaneous Paper S-73-1,
    Department of the Army, U.S. Army Corps of Engineers, Washington,
    3. Baziar, M.H., R., Dobry and A-W.M., Elgamel, “Engineering
    evaluation of permanent ground deformations due to seismicallyinduced
    liquefaction,” Technical Report NCEER-92-0007, National
    Center for Earthquake Engineering Research, State University of New
    4. Byrne, P.M., “LIQDISP; A computer program to predict liquefaction
    induced displacement of slopes,” Soil Mechanics series No.
    147 .Department of Civil Engineering, University of British Columbia,
    5. Dobry, R. and M.H., Baziar, “Permanent ground deformations due to
    lateral spreading during earthquake ,” Conferrence Proceedings, Third
    Japan-U.S. Workshop soil liquefaction, December 17-19, San
    Francisco, CA, Sponsored by National Center for Earthquake
    Engineering Research, State University of New York, Buffalo, Red
    Jacket Quadrangle, pp. 209-223 (1990).
    6. Franklin A.G. and F.K., Chang, “Permanent displacements of earth
    embankments by Newmark sliding block analysis,” Report 5,
    Miscellaneous Paper S-71-17, Army Corps of Engineers Waterways
    Experiments Station, Vicksburg, Mississippi(1977).
    7. Finn, W.D.L. and M., Yogendrakumar, “TARA-3FL : Program for
    analysis of liquefaction induced flow deformations,” Department of
    Civil Engineering, University of British Columbia, Vancouver, B.C.,
    Canada (1989).
    8. Finn, W.D.L., “Analysis of post-liquefaction deformations in soil
    structures,” H. Bolton Seed, Vol. 2 Memorial Symposium Proceedings,
    May, 1990, Editor J. Michael Duncan, Bitech Publishers, LTd.,
    Vancouver, B.C., Canada, pp. 291-311 (1990).
    9. Goodman, R.E. and H.B., Seed, “Earthquake-induced displacements
    in sand Embankment,” Journal of the Soil Mechanics and
    Foundations Division, ASCE92(SM2), pp.125-146 (1966).
    10. Hamada, M., S., Yasuda, R., Isoyama and K., Emoto, “Study on
    liquefaction induced permanent ground displacements,” Report for the
    Association for the Development of Earthquake (1986).
    11. Hamada, M., I., Towhata, S., Yasuda and R., Isoyama, “Study of
    permanent ground displacement induced by seismic liquefaction,”
    Computers and Geotechnics, Vol. 4, No.4, Elsevien Applied Science
    Publishers, pp. 197-220 (1987).
    12. Ishihara, K., “Liquefaction and flow failure during earthquakes,”
    Geothchnique, Vol. 43, No. 3, pp. 351-415 (1993).
    13. Ishihara, K., Tatsouka, F. and Yasuda, S., “Undrained Deformation
    and Liquefaction of Sand under Cyclic Stress,” Soils and
    Foundations,JSSMFE, Vol. 15, No. 1, pp. 29-44 (1975)
    14. Mabey, M.A., “Prediction of displacements due to liquefaction
    induced lateral spreading,” Doctoral Dissertation, Department of Civil
    Engineering, Brigham Young University, Provo, Utah, Technical
    Report CEG-92-02 (1992).
    15. Makdisi, F.I. and H.B., Seed, ‘Simplified procedure for estimating
    dam and embankment earthquake-induced deformations,” Journal of
    the Geotechnical Engineering Division, ASCE 104(GT7), pp. 849-867
    (1978).
    16. Marcuson, W.F., M.E., Hynes and A.G., Franklin, “Evaluation and use
    of residual strength in seismic safety analysis of embankments,”
    Earthquake Spectra, Vol. 6, No. 3, August, pp. 163-176 (1990).
    17. Newmark, N.M., “Effects of earthquakes on dams and embankments,”
    Geotechnique, Vol. 15, No.2, pp. 139-160 (1965).
    18. Prevost, J.H., “DYNA-FLOW : A nonlinear transient finite element
    analysis program,” Report No. 81-SM-1, Department of Civil
    Engineering, Princeton University, Princeton, N.J. (1981).
    19. Towhata, I., K., Tokida, Y., Jamari, H., Matsumoto and K., Yamada,
    “Prediction of permanent lateral displacement of liquefied ground by
    means of variational principle,” Conference Proceedings, Third
    Japan-U.S. Workshop on Earthquake Resistant Design of Lifeline
    Facilities and Countermeasures for Soil Liquefaction, December 17-
    19, San Francisco, CA, Sponsored by Nation Center for Earthquake
    Engineering Research, State University of New York at Buffalo, Red
    Jzcket Quadrangle, Boffalo, NY, pp. 237-251 (1990).
    20. Towhata, I., “Liquefaction and associated phenomenon,” Proceedings
    of First International Conference on Earthquake Geothchnical
    Engineering, Tokyo, Vol. 3, pp. 1411-1434 (1996).
    21. Yasuda, S., H., Nagase, H., Kiku and Y., Uchida, “A simplified
    procedure for the analysis of the permanent ground displacement,”
    Conference Proceedings, Third Japan-U.S. Workshop on Earthquake
    Resistant Design of Lifeline Facilities and Countermeasures for Soil
    Liquefaction, December 17-19, San Francisco, CA, Sponsored by
    Nation Center for Earthquake Engineering Research, State University
    of New York at Buffalo, Red Jzcket Quadrangle, Boffalo, NY, pp.
    225-236 (1990).
    22. Yegian, M.K., E.A., Marciano and V.G., Gharaman, “Integrated
    seismic risk analysis for earth dams,” Report 88-15, Northeastern
    University, Boston (1988).
    23. Yegian, M.K., E.A., Marciano and V.G., Ghahraman, “earthquakeinduced
    deformation probabilistic approach,” Journal of Geotechnical
    Engineering, Vol.117, No. 1, pp. 35-50 (1991).
    24. Yoshida, K.J. and K.T., Mitsuru, “Characteristics of lateral spreading
    in liquefied deposits during the 1995 Hanshin-Awaji earthquake,”
    Journal of Earthquake Engineering, Vol. 1, No. 1, pp. 23-55(1997).
    25. Youd, T.L. and D.M., Perkins, “Mapping of Liquefaction Severity
    Index,” Journal of Geotechnical Engineering, ASCE, Vol.113, No.11,
    pp. 1374-1392 (1987).
    26. Been, K. and M.G., Jefferies, “A state parameter for sands,”
    Geotechnique, Vol. 35, No. 2, pp. 99-112 (1985).
    27. Been, K., M.G., Jefferies and J., Hachey, “The critical state of sands,”
    Geotechnique, Vol. 41, No. 3, pp. 365-381 (1991).
    28. Marcuson , W.F., M.E., Hynes and A.G. Franklin, “Evaluation and use
    of residual strength in seismic safety analysis of embankments,”
    Earthquake Spectra, Vol. 6, No. 3, pp.529-572 (1990).
    29. Timothy, D.S. and G. Mesri, “Undrained shear strength of liquefied
    sands for stability analysis,” Journal of Geotechnical Engineering, Vol.
    118, No. 11, pp. 1727-1747(1992).
    29.Castro, G., “Liquefaction and cyclic mobility of saturated sands,”
    Journal of the Geotechnical Engineering Division, Proceeding of the
    American Society of Civil Engineers, Vol. 101, No. GT6, pp.551-569
    (1975).
    30. Poulos, S.J., “The steady state of deformation,” Journal of Geotech.
    Engng Am. Soc.Civ. Engrs, Vol. 17, GT5, pp.553-562 (1981).
    31. Poulos, S.J., G., Castro and J.W. France, “Liquefaction evaluation
    procedure,” Journal of Geotech. Engng Am. Soc.Civ. Engrs, Vol. 111,
    No. 6, pp.772-792 (1985).
    32. Poulos, S.J., G., Castro and J.W. France, “Closure to discussion :
    Liquefaction evaluation procedure,” Journal of Geotech. Engng Am.
    Soc.Civ. Engrs, Vol. 114, No. 2, pp.251-259 (1988).
    33. 廖瑞堂,「最小及最大乾土單位重之試驗規範研究比較」,碩士
    論文,國立成功大學土木工程研究所,台南(1982)。
    34. 黃俊鴻、楊志文、譚志豪、陳正興,「集集地震土壤液化之調查
    與分析」,地工技術,第77 期,第51-64 頁(2000)。
    35. 褚炳麟、張益銘、陳冠閔,徐松析、張錦銘,「921 地震霧峰、太
    平地區液化及下陷調查分析」,地工技術,第77 期,第19-28 頁
    (2000)。
    36. 沈茂松著,實用土壤力學試驗,第77 期,文笙書局,台北(1988)。

    QR CODE
    :::