跳到主要內容

簡易檢索 / 詳目顯示

研究生: 陳瑋強
Wei-Chiang Chen
論文名稱: 比較均勻水頭與均勻流量邊界對多深度微水試驗薄壁效應之影響
Comparison of Uniform Head and Uniform Flux Wellbore Conditions for Multilevel Slug Test with Skin Effect
指導教授: 陳家洵
Chia-Shyun Chen
口試委員:
學位類別: 碩士
Master
系所名稱: 地球科學學院 - 應用地質研究所
Graduate Institute of Applied Geology
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 68
中文關鍵詞: 多深度微水試驗薄壁效應
相關次數: 點閱:5下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 多深度微水試驗(MLST)可用於測定含水層中水力傳導係數的垂直分布K(z),在建立MLST的模型時,依照井篩邊界條件假設的不同,分別建立了均勻水頭模式(UH)和均勻流量模式(UF),同時我們將薄壁效應加入模式中,分析正薄壁與負薄壁效應對UH模式與UF模式的影響。正薄壁效應是由於鑽井時鑽泥入侵井周圍的土壤孔隙,使井邊地質材料透水能力下降,而我們利用正薄壁因子Sk來表示正薄壁效應的影響。負薄壁效應則是井設置完成後浣井過度,造成井邊土壤顆粒遭到掏洗而使井邊地質材料透水性增加,而我們利用有效井管半徑re來模擬負薄壁效應的影響。利用不同Sk與re搭配部分貫穿比 、垂直異向比 和扁平比 的組合來比較UH模式與UF模式之間的差異,發現(1)在非均勻薄壁效應的狀況下,測試段的離散數目不影響井內的水頭反應;(2)在非均勻薄壁效應的分布情況,可以利用一種平均的方法來取得最相合的平均薄壁因子,但依照薄壁效應的分布情況不同,使用的平均方法也會不同;(3)當正薄壁效應時,UF與UH模式相合;在負薄壁效應時, 越小、 越小與 越大的狀況下,UF與UH模式越不相合。


    The multilevel slug test (MLST) is an in-well technique in characterizing the vertical distribution of hydraulic conductivity K(z) in aquifer. In modeling MLST, the well screen is either simulated as a uniform-flux (UF) or a uniform head (UH) condition. This study investigates the impact of the skin effect, positive or negative, on the UH and UF models. The positive skin effect, as associated with a reduced hydraulic conductivity surrounding the well due to drilling mud invasion, is taken into account by making use of a skin factor, Sk. The negative skin effect, as associated with an increased hydraulic conductivity due to overdeveloping of the well, is modeled by using an effective well radius, re, which is greater than or equal to the well radius, rw. The UF and UH models are compared using different values of Sk and re for a variety of the partial penetration ratio of screen length to aquifer thickness, , the vertical anisotropy ratio of hydraulic conductivity, , and the aspect ratio of rw to the screen length, . It is found that (1)For positive skin, UH and UF models yield the same results for both high- and low-K conditions, (2)For negative skin (-3<Sk<-1), discrepancy existing between UH and UF models becomes more pronounced for a smaller aspect ratio, α, or a smaller partial penetration, , or a larger vertical anisotropy ratio, κ, and (3)In place of a non-uniform Sk(z), an apparent uniform is able to yield the same results, but their relationship is highly dependent on the distribution of Sk(z). No unique relationship exists for Sk(z) and .

    目錄 中文摘要 i 英文摘要 ii 目錄 iii 圖目錄 v 符號說明 viii 第一章 緒論 1 1.1 多深度微水試驗 1 1.2 混合邊界模式發展 5 1.3 薄壁效應 6 1.4 研究動機與目的 10 第二章 考慮非均勻薄壁效應之均勻水頭模式 11 2.1 均勻水頭模式推導 11 2.2 使用正薄壁因子之均勻水頭模式 21 2.3 使用有效井管半徑之均勻水頭模式 25 第三章 考慮薄壁效應之均勻流量模式 28 3.1 均勻流量模式推導 28 3.2 使用正薄壁因子之均勻流量模式 30 3.3 使用有效井管半徑之均勻流量模式 32 第四章 考慮非均勻薄壁效應之均勻水頭模式 33 4.1 非均勻薄壁效應中測試段離散數目M的影響 34 4.2 比較三種非均勻薄壁效應的平均方法 38 4.3 薄壁效應中均勻水頭與均勻流量模式比較 45 第五章 結論與建議 48 5.1 結論 48 參考文獻 49

    [1]Hvorslev, M. J., Time lag and soil permeability in ground-water observations., U. S. Army Corps of Engineers, Waterways Experiment Station Bulletin No.36, Mississippi, USA, 1951.
    [2]Cooper, H. H., Jr., Bredehodft, J. D. and Papadopulos, I. S., “Response of a finite-diameter well to an instantaneous charge of water”, Water Resource Research, 3(1), 263-269, 1967.
    [3]Bouwer, H., and R. C. Rice, “A slug test for determining hydraulic conductivity of unconfined aquifers with completely or partially penetrating wells”, Water Resour. Res., 12(3), 423-428, 1976.
    [4]Dagan, G., “A note on packer, slug, and recovery tests in unconfined aquifers”, Water Resour. Res., 14(5), 929-934, 1978.
    [5]Widdowson, M. A., F. J. Molz, and J. G. Melville, “An analysis technique for multilevel and partially penetrating slug test data”, Ground Water, 28(6), 937-945, 1990.
    [6]Melville, J. G., F. J. Molz, O. Guven, and M. A. Widdowson, “Multi- level slug tests with comparisons to tracer data”, Ground Water, 29(8), 897-907, 1991.
    [7]Hinsby, K., P. L. Bjerg, L. J. Andersen, B. Skov, and E. V. Clausen, “A mini slug test method for determination of a local hydraulic conductivity of an unconfined sandy aquifer”, J. Hydrol., 136, 87-106, 1992.
    [8]Butler, J. J. Jr., G. C. Bohling, Z. Hyder, and C. D. McElwee, “The use of slug test to describe vertical variations in hydraulic conductivity”, J. Hydrol., 156, 137-162, 1994.
    [9]Ross, H. C. and C. D. McElwee, “Multi-level slug tests to measure 3-D hydraulic conductivity distributions”, Nat. Resour. Res., 16(1), 67-79, 2007.
    [10]van der Kamp, G., “Determining aquifer transmissivity by memans of well response tests: The underdamped case”, Water Resour. Res., 12(1), 71-77, 1976.
    [11]Kipp, K. L. Jr., “Tyoe curve analysis of inertial effects in the response of
    a well to a slug test”, Water Resour. Res., 21(9), 1397-1408, 1985.
    [12]Springer, R. K., and L. W. Gelhar, Characterization of large-scale aquifer heterogeneity in glacial outwash by analysis of slug tests with oscillatory response., Cape Cod, Massachusetts. U.S. Geological Survey Water-Resources Investigations Report 91-4034, 36-40, 1991.
    [13]Zlotnik, V. A., and V. L. McGuire, “Multi-level slug tests in highly permeable formations: 1. Modification of the Springer-Gelhar (SG) model”, J. Hydrol., 204, 271-282, 1998.
    [14]Zlotnik, V. A., and V. L. McGuire, “Multi-level slug tests in highly permeable formations: 2. Hydraulic conductivity identification, method verification, and field applications”, J. Hydrol., 204, 283-296, 1998.
    [15]Zurbuchen, B. R., V. A. Zlotnik, and J. J. Butler Jr., “Dynamic interpretation of slug test in highly permeable aquifers”, Water Resour. Res., 38(3), 1025, doi: 10.1029/2001WR000354, 2002.
    [16]Butler, J. J. Jr., E. J. Garnett and J. M. Healey, “Analysis of slug tests in formations of high hydraulic conductivity”, Ground Water, 41(5), 620-630, 2003.
    [17]Butler, J. J. Jr. and X. Zhan, 2004. “Hydraulic tests in highly permeable aquifers”, Water Resour. Res., 40, doi: 10.1029/2003 WR002998, 2004.
    [18]Chen, C. S., and C. R. Wu, “Analysis of depth-dependent pressure head of slug tests in highly permeable aquifers”, Ground Water, 44(3), 472-477, 2006.
    [19]Chen, C. S., “An analytic data analysis method for oscillatory slug tests”, Ground Water, 44(4), 604-608, 2006.
    [20]Butler, J. J. Jr., The Design, Performance, and Analysis of Slug Tests., Boca Raton, Florida: Lewis Publishers, 1998.
    [21]Chen, C. S., Y. C. Sie and Y. T. Lin, “A Review of the Multilevel Slug Test for Characterizing Aquifer Heterogeneity”, Terr. Atmos. Ocean. Sci., 23(2), 131-143, doi: 10.3319/TAO.2011.10.03.01(Hy), 2012.
    [22]Hayashi, K., T. Ito, and H. Abe´ (1987), A new method for the determination of in situ hydraulic properties by pressure pulse tests and application to the Higashi Hachimantai geothermal field, J. Geophys. Res., 92(B9), 9168– 9174.
    [23]Cassiani, G., and Z. J., Kabala, Hydraulics of a partially penetrating well: solution to a mixed-type boundary value problem via dual integral equations, J. Hydrol., 211, 100-111, 1998.
    [24]Cassiani, G., Z. J. Kabala, and M. A. Medina Jr., Flowing partially penetrating well: solution to a mixed-type boundary value problem., Adv. Water Resour., 23, 59-68, 1999.
    [25]Chang, C. C., and C. S. Chen, A flowing partially penetrating well in a finite-thickness aquifer: A mixed-type initial boundary value problem, J. Hydrol., 271, 101-118, 2003.
    [26]T. Perina and T.C. Lee, General well function for pumping from a confined, leaky, or unconfined aquifer, J. Hydrol.,317,239-260,2006.
    [27]王鼐,「利用積分轉換求解承壓含水層中多深度微水試驗的混合邊界值問題」,吉林大學,碩士論文,2013年。
    [28]van Everdingen, A. F., “The skin effect and its influence on the productive capacity of a well”, Trans. AIME, 198, 171-176, 1953.
    [29]Hurst, W., “Establishment of the skin effect and its impediment to fluid flow into a well bore”, Pet. Eng., 25(10), B-6, 1953.
    [30]Hawkins Jr, M., “A note on the skin effect”, J. Pet. Tech., 8(12), 65-66, 1956.
    [31]Brons, F., and W.C., Miller, “A simple method for correcting spot pressure readings”, J. Pet. Tech., 13(8), 803-805, 1961.
    [32]Hurst, W., J. D. Clark, and E. B. Brauer, “The skin effect in producing wells”, J. Pet. Tech., 246, 1483-1489, 1969.
    [33]Standing, M. B., “Calculating damage effects in well flow problem”, unpubl. notes, Standford Univ., 20 p., 1979.
    [34]Streltsova, T. D., Well Testing in Heterogeneous Formations., John Wiley and Sons, Inc., New York, 1988.
    [35]Novakowski, K. S., “A composite analytical model for analysis of pumping tests affected by well bore storage and finite thickness skin”, Water Resour. Res., 251(10), 1937-1946, 1989.
    [36]Onyekonwu, M. O., “Program for designing pressure transient tests”, Computers and Geosciences, 15(7), 1067-1088, 1989.
    [37]Ruud, N. C., and Z. J. Kabala, “Numerical evaluation of the flowmeter test in a layered aquifer with s skin zone”, J. Hydrol., 203, 101-108, 1997.
    [38]Chen, C. S. and C. C. Chang, “Use of cumulative volume of constant-head injection test to estimate aquifer parameters with skin effect: Field experiment and data analysis”, Water Resour. Res., 38(5), 1056, doi: 10. 1029/2001WR000300, 2002.
    [39]Chen C. S., and C. C. Chang, “Theoretical evaluation of non-uniform skin effect on aquifer response under constant rate pumping”, J. Hydrol., 317, 190-201, 2006.
    [40]Kreyszig, E., Advanced Engineering Mathematics., 8th Edition, John Wiley and Sons, Inc., New York, Oct. 23,1998.
    [41]Churchill, R. V., Operational Mathematics, McGraw-Hill, New York, 1972.
    [42]Haberman, R., Elementary Applied Partial Differential Equations, Prentice-Hall, Englewood Cliffs, New Jersey, 1987.
    [43]de Hoog, F.R., J. H. Knight and A. N. Stokes, “An improved method for numerical inversion of Laplace transforms”, SIAM. J. Sci. and Stat. Comput., 3(3), 357366, 1982.

    QR CODE
    :::