跳到主要內容

簡易檢索 / 詳目顯示

研究生: 林建嘉
CHIEN-CHIA LIN
論文名稱: 如何應用Deep Learning預測之下週股價於實際交易的獲利與風險分析
How to apply Deep Learning to predict the profit and risk analysis of stock trading in the next week
指導教授: 許智誠
口試委員:
學位類別: 碩士
Master
系所名稱: 管理學院 - 資訊管理學系在職專班
Executive Master of Information Management
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 80
中文關鍵詞: 深度學習長短期記憶網路時間卷積網路股價預測時間序列程式交易
相關次數: 點閱:20下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在近幾年的文獻或是期刊中,有大量的Deep learning是運用來預測下一個時間點會發生的事情,也就是說有很多的文獻在預測下一個時間點的收盤價或是股價,但只研究到是否能精準的預測到未來的股價如此而已,卻無人研究這樣的預測結果在實際的交易中是否能夠真實獲利。
    本研究使用深度學習運用在時間序列預測較為不錯的LSTM與TCN做為股價預測模型,但預測後怎麼運用在交易上,這個是比較少人在探討的,而運用在交易如果是使用程式交易的話,比較容易有系統的去了解它的獲利與風險,本研究提出了在傳統上很常用使用LSTM來預測股價,但並沒有把它和固定的交易模式去做測試預測收盤價後可能的獲利性,本研究是用程式交易和把預測的時間拉長到週,因為以週為單位股價較容易有上下波動,把這兩者結合去探討獲利的可能性。
    本研究探討臺灣50成份股存在超過30年的公司,需要超過30年是因為以週為單位及預測模型需要有一定資料量的關係,所以臺灣50中有超過30年公司一共有11家,驗證此11家公司,其中有9家呈現不錯的獲利表現。


    In recent literature or journals, there is a large amount of Deep Learning used to predict what will happen at the next point in time, that is, there are many documents that predict the closing price or stock price at the next time, but Only researched whether it is possible to accurately predict the future stock price, but no one has studied whether such predictions can actually make a profit on actual transactions.
    This study uses deep learning to use LSTM and TCN, which are better predictors of time series, as a stock price forecasting model. However, how to use it in trading after the forecast is relatively small, and it is used in trading if the program is used. It is easier to systematically understand its profit and risk. This study proposes that LSTM is traditionally used to predict stock prices, but it has not been tested with the fixed trading pattern to predict the closing price. For the sake of profitability, this study uses program trading and stretches the forecast time to weeks, because the stock price is more likely to fluctuate up and down in weeks, and the two are combined to explore the possibility of profit.
    This study explores the fact that Taiwan's 50 constituent stocks have existed for more than 30 years. It takes more than 30 years because the weekly units and forecasting models need to have a certain amount of data. Therefore, there are 11 companies in Taiwan with more than 30 years. Of the 11 companies, 9 of them have a good profit performance.

    中文摘要 i Abstract ii 誌謝 iii 目錄 iv 圖目錄 vi 表目錄 viii 一、 緒論 1 二、 文獻探討 4 2-1 臺灣50指數成分股 4 2-2 LSTM長短期記憶網路 4 2-3 TCN時間卷積網路 6 2-4 程式交易 8 2-5 績效與風險評估 9 2-6 最佳化 9 三、 系統設計與實作 10 3-1 不同深度學習模型研究與比較 11 3-1-1 LSTM模型建構 12 3-1-2 TCN模型建構 15 3-2 固定交易模式 17 3-2-1 低接交易模式 17 3-2-2 價差交易模式 19 3-2-3 策略參數最佳化 21 3-2-4 設計績效與風險評估項目 23 3-3 資料來源與資料切割 23 3-3-1 資料來源 23 3-3-2 資料切割 24 四、 系統驗證與結果 27 4-1 系統流程與驗證 27 4-2 (步驟一)驗證深度學習模型之比較結果 28 4-3 (步驟二)驗證程式交易回測之獲利結果 32 4-4 (步驟三)綜合分析與比較結果 60 4-5 (步驟四)MDD風險評估結果 63 五、 結論 64 5-1 結論 64 5-2 研究限制 65 5-3 未來展望 65 參考文獻 66

    [1]. Bai, S., Kolter, J. Z., & Koltun, V. (2018). An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv preprint arXiv:.01271.
    [2]. Chollet, F. (2017). DEEP LEARNING with Python. USA: Manning Publications.
    [3]. Gers, F. A., Schmindhuber, J., Cummins, F. (1999). Learning to Forget: Continual Prediction with LSTM, Proceedings of Ninth International Conference on Artificial Neural Networks (ICANN’99). No.470 (850-855).
    [4]. Greff, K., Srivastava, R. K., Koutnik, J., Steunebring, B. R.& Schmidhuber, J. (2017). LSTM: A Search Space Odyssey. Proceedings of IEEE Transactions on Neural Networks and Learning Systems 28 (2222-2232).
    [5]. He, K., Zhang, X., Ren, S., & Sun, J. (2015). Delving deep into rectifiers: Surpassing human-level performance on imagenet classification. Paper presented at the Proceedings of the IEEE international conference on computer vision.
    [6]. Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. Neural computation, 9(8), 1735-1780.
    [7]. Krizhevsky, A., Sutskever, I.,& Hinton, G.E. (2012) . ImageNet Classification with Deep Convolutional Neural Network. Proceedings of the 25th International Conference on Neural Information Processing Systems (NIPS’12). Vol.1. (1097-1105).
    [8]. LeCun, Y., Bengio, Y.,& Hinton, G. (2015). Deep learning. Proceedings of Nature 521, (436-444).
    [9]. Li, H., Shen, Y.,& Zhu, Y. (2018). Stock Price Prediction Using Attention-based Multi-Input LSTM. Proceedings of The 10th Asian Conference on Machine Learning(PMLR 95)( 454-469).
    [10]. Oord, A., Dieleman, S., Zen, H., Simonyan, K., Vinyals, O., Graves, A., Kalchbrenner, N., Senior, A.,& Kavukcuoglu, K. (2016), Wavenet: A Generative Model For Raw Audio. Google AI. Retrieved March 6, 2019 from https://arxiv.org/pdf/1609.03499.pdf
    [11]. Pant, N. (2017). A Guide For Time Series Prediction Using Recurrent Neural Networks(LSTMS). Retrieved September 6, 2018 from https://blog.statsbot.co/time-series-prediction-using-recurrent-neural-networks-lstms-807fa6ca7f
    [12]. Van Den Oord, A., Dieleman, S., Zen, H., Simonyan, K., Vinyals, O., Graves, A., . . . Kavukcuoglu, K. (2016). WaveNet: A generative model for raw audio. SSW, 125.
    [13]. 李政霖 (2019)。即時空氣品質動態監測系統結合LSTM模型預測PM2.5濃度之應用。國立臺北科技大學電機工程研究所碩士論文,台灣,台北。
    [14]. 陳煜文 (2018)。以委託單資料預測當日股價趨勢-LSTM類神經網路模型之應用。天主教輔仁大學金融與國際企業學系金融碩士研究所碩士論文,台灣,新北市。
    [15]. 黃培琳。 (2011)。程式交易策略、期貨交易和法人交易之實證研究。 朝陽科技大學財務金融系碩士論文。
    [16]. 許嘉恩 (2018)。利用移動窗格法驗證程式交易策略樣本內外穩健性的自動化平台設計研究。國立中央大學資訊管理研究所碩士論文,台灣,桃園。
    [17]. 曾崇銘、陳宥任 (2014)。股市的科學煉金術:程式交易全圖解。Smart智富。

    QR CODE
    :::