跳到主要內容

簡易檢索 / 詳目顯示

研究生: 黃伯雄
Po-hsiung Huang
論文名稱: UASB串聯活性污泥提升氨基甲酸鹽類農藥原體廢水處理成效之探討
Combined UASB-Activated Sludge Reactor System Treated Enhance Explore Carbamate Pesticide Wastewater
指導教授: 李俊福
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 環境工程研究所在職專班
Executive Master of Environmental Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 104
中文關鍵詞: 氨基甲酸鹽農藥廢水製程綜合廢水委外清運廢水上流式厭氧污泥床活性污泥
相關次數: 點閱:15下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 綜觀國內氨基甲酸鹽類農藥製造過程常添加有機性化學物質,所以製程綜合廢水及委外清運廢水中常含有甲苯、甲醇、異丙醇、碳酸鈉及微量毒性物質等有機性化學物質,兩股廢水差異在各種有機性化學物質所含濃度高低不同,而且值得注意的是氨基甲酸鹽類農藥製造廠廢水,大部分都以化學混凝及好氧活性污泥處理方法,其處理成效較不盡理想。本研究利用上流式厭氧污泥床(UASB)串聯活性污泥(AS)模組,實廠處理氨基甲酸鹽農藥廢水,在控制相關操作參數下啟動運轉,探討模組去除COD之成效。
    研究利用果糖食品業處理廢水程序中厭氧污泥以及肥皂化工業活性污泥分別馴養,UASB反應器污泥植種開始啟動主要操作參數為,廢水進流流量:4 ml/min、廢水迴流流量:4 ml/min、水力停留時間:150hr、進流廢水COD負荷:507 mg/L、pH:7.2、溫度:26~29℃、MLSS:34,300 mg/L,活性污泥法污泥植種開始啟動主要操作參數為:廢水進流流量:4 ml/min、水力停留時間:150hr、DO:2~3 mg/L、溫度:25~28℃、MLSS:2,280 mg/L。以製程綜合廢水不同COD級距提升進流COD負荷,至8,430 mg/L時,整套模組平均出流水COD值為52 mg/L,COD去除率為99.4%,可維持較佳之COD去除效率,並且符合環保署公告之放流水排放標準100 mg/L以下法規面的要求。依統計實廠廢水排放COD濃度平均範圍值為1,000~8,000 mg/L,由此可以證明此方法有足夠的能力,去處理氨基甲酸鹽農藥製程綜合廢水。
    委外清運廢水進流COD負荷範圍為560~2,790 mg/L,整套模組平均出流水COD值為269 mg/L,COD去除率為81%,因無法符合環保署公告之放流水排放標準100 mg/L以下法規面的要求,所以目前只能維持原委外清運方式處理。依統計實廠廢水委外清運COD濃度平均範圍值為50,000~150,000 mg/L,由此可以證明此方法無足夠的能力,去處理氨基甲酸鹽農藥委外清運廢水。


    Looking at the domestic carbamate pesticide manufacturing process often add organic chemicals, Therefore, the outsourcing process wastewater and removal comprehensive wastewater often contain toluene, methanol, isopropyl alcohol, sodium carbonate and trace toxic substances . Two stocks differences wastewater with a variety of organic chemicals contained in the high and low concentration, mostly treated by chemical coagulation and aerobic activated sludge treatment method compared the effectiveness of different treatment ideal. In this study, upflow anaerobic sludge blanket (UASB) in series with activated sludge (AS) module, real carbamate pesticide plant wastewater treatment, start running under the control of the relevant operating parameters, to explore the effectiveness of COD removal of the module.
    Research on the use of fructose in food industry wastewater treatment process of anaerobic sludge and chemical sludge soap were domesticated. UASB reactor sludge started planting seed main operating parameters of wastewater into the stream flow: 4 ml / min, the flow of wastewater reflux : 4 ml / min, hydraulic retention time: 150hr, into the flow of wastewater COD load: 507 mg / L, pH: 7.2, temperature: 26 ~ 29 ℃, MLSS: 34,300 mg / L. The activated sludge began planting seed start main operating parameters are: wastewater into the stream flow: 4 ml / min, hydraulic retention time: 150hr, DO: 2 ~ 3 mg / L, temperature: 25 ~ 28 ℃, MLSS: 2,280 mg / L. Integrated with process wastewater from a different level to improve the inflow COD COD load to 8,430 mg / L, the set of modules average effluent COD is 52 mg / L, COD removal efficiency of 99.4% can be maintained for better removal efficiency of COD, and comply with effluent discharge standards EPA announced 100 mg / L or less regulation surface requirements. By statistical real plant wastewater COD concentration average range is 1,000 ~ 8,000 mg / L, this method can prove there is sufficient capacity to handle carbamate pesticide comprehensive process wastewater.
    Outsourcing COD removal of wastewater into the stream load range of 560 ~ 2,790 mg / L, the entire module average effluent COD value of 269 mg / L, COD removal efficiency of 81%, due to inability to meet effluent discharge standards EPA announcement 100 mg / L or less face regulatory requirements, so the whole story can only be maintained outside the current removal manner. By outsourcing statistics real plant wastewater COD removal average concentration range is 50,000 ~ 150,000 mg / L, can prove that this method is not sufficient capacity to handle the outsourcing carbamate pesticide waste removal.

    目錄……………………………………………………………………………............. I 圖目錄…………………………………………………………………………............. IV 表目錄…………………………………………………………………………............. VI 第一章 前言……………………………………………………………....................... 1 1-1 研究緣起………………………………………………………………... 1 1-2 研究目的………………………………………………………………... 2 第二章 文獻回顧……………………………………………………………………... 3 2-1 農藥原體製造業歷史及現況…………….…………………………….. 3 2-2 農藥原體製程廢水之處理方法……………………………………...... 6 2-3 氨基甲酸鹽類農藥製程…………………………………….................. 8 2-4 氨基甲酸鹽類製程廢水來源及特性…………………………………... 11 2-5 UASB 反應器概述…………………………………………….............. 12 2-5-1 UASB 反應器之設計規範……………………………............. 14 2-5-2 UASB 反應器之影響因子……………………......................... 16 2-5-3 UASB 反應器之應用…………………………………………. 20 2-5-4 UASB 反應器之優點…..……………………………………… 26 2-6 活性污泥系統………………………...……………………………….. 27 2-6-1 活性污泥之發展……………………………………………….. 27 II 2-6-2 活性污泥系統處理性能之影響因子…………………………. 29 2-6-3 活性污泥之生物組成………………………………………….. 31 2-6-4 活性污泥之化學組成………………………………………….. 32 第三章 實驗設備與方法…………………………………………………………….. 34 3-1 研究架構與流程….……………………………………......................... 34 3-2 實驗設備與藥品….…………………………………….......................... 35 3-2-1 UASB 串聯活性污泥模組…………………………………….. 36 3-2-2 儀器設備……………………………………………………….. 39 3-2-3 藥品種類….……………………………………........................ 40 3-3 實驗方法….…………………………………….................................... 42 3-3-1 實驗廢水之配製….…………………........................................ 42 3-3-2 UASB 反應器與活性污泥之植種….……………………........ 42 3-3-3 UASB 反應器之實驗操作….…………………………............ 42 3-3-4 實驗分析方法….……………………………………................ 44 第四章 結果與討論………………………………………………………………....... 46 4-1 UASB 反應器甲烷產生菌之生長影響因子…………………….......... 47 4-1-1 pH 值……………………………..……………………………. 47 4-1-2 水力停留時間……………………………................................ 49 4-1-3 溫度….……………………………………............................... 50 4-1-4 有機負荷率….……………………………………................... 51 4-2 UASB 反應器對含氨基甲酸鹽類廢水之處理效能………………...... 52 4-2-1 製程綜合廢水之處理效能…………………………………….. 53 III 4-2-2 委外清運廢水之處理效能…………………………………….. 59 4-3 UASB反應器串聯活性污泥法處理氨基甲酸鹽類廢水之處理效能… 64 4-3-1 製程綜合廢水之處理效能….………………………................ 65 4-3-2 委外清運廢水之處理效能….………………………................ 72 4-4 影響最佳處理效能之其他因子….…………………………….............. 76 4-4-1 溶氧….……………………………………............................... 76 4-4-2 毒性物質….……………………………………........................ 77 4-5 處理效率與成本效益分析…... ….……………………….................... 78 第五章 結論與建議.………………………………………………………………...... 82 5-1 結論……………………………………………………………………... 82 5-2 建議……………………………………………………………………... 83 參考文獻………………………………………………………………………............. 85

    1.Arceivala, S.J. 1995. Experiences with UASB for sewage treatment in India. 22:90–4.
    2.Azbar, N., Dokgoz, F.T., Keskin, T., Eltem, R., Korkmaz, K.S., Gezgin, Y., Akbal, Z., Oncel, S., Dalay, M.C., Gonen, C., Tutuk, F. 2009. Comparative Evaluation of Bio-Hydrogen Production From Cheese Whey Wastewater Under Thermophilic and Mesophilic Anaerobic Conditions. International Journal of Green Energy, 6(2), 192-200.
    3.Bodik, I., Herdova, B., Drtil, M. 2000. Anaerobic treatment of the municipal wastewater under psychrophilic conditions. Bioprocess Engineering, 22(5), 385-390.
    4.Campos, C.M.M., Anderson, G.K. 1992. The Effect of the Liquid Upflow Velocity and the Substrate Concentration on the Start-up and Steady-State Periods of Lab-Scale Uasb Reactors. Water Science and Technology, 25(7), 41-50.
    5.Collins, C.E., Incropera, F.P., Grady, C.P.L. 1978. Effect of Temperature Control on Biological Wastewater-Treatment Processes. Water Research, 12(8), 547-554.
    6.Cooke, W.B., Pipes, W.O. 1970. Occurrence of Fungi in Activated Sludge. Mycopathologia Et Mycologia Applicata, 40(3-4), 249-270.
    7.Curds, C.R., Cockburn, A. 1970. Protozoa in Biological Sewage-Treatment Processes .1. A Survey of Protozoan Fauna of British Percolating Filters and Activated-Sludge Plants. Water Research, 4(3), 225-228.
    8.Draaijer, H., Maas, J.A.W., Schaapman, J.E., Khan, A. 1992. Performance of the 5 MLd Uasb Reactor for Sewage-Treatment at Kanpur, India. Water Science and Technology, 25(7), 123-133.
    9.Eckenfelder, W.W. 1988. Industrial water pollution control. MaGraw-Hill, New York.
    10.Edeline, F. 1993. L'Epuration biologique des eaux : théorie et technologie des réacteurs. 4th ed. Tec et Doc.
    11.Gaudy, A.F. 1980. Microbiology for environment scientistic and engineers. McGraw-Hill, New York.
    12.Goncalves, R.F., de Araujo, V.L., Chernicharo, C.A.L. 1998. Association of a UASB reactor and a submerged aerated biofilter for domestic sewage treatment. Water Science and Technology, 38(8-9), 189-195.
    13.Grady, C.P.L., Daigger, G.T., Kim, H.C. 1999. Biological wastewater treatment. 2nd ed. Marcel Dekker, New York.

    QR CODE
    :::